Increased Variability in the Early Winter Subarctic North American Atmospheric Circulation*

2015 ◽  
Vol 28 (18) ◽  
pp. 7297-7305 ◽  
Author(s):  
James E. Overland ◽  
Muyin Wang

Abstract The last decade shows increased variability in the Arctic Oscillation (AO) index for December. Over eastern North America such increased variability depended on amplification of the climatological longwave atmospheric circulation pattern. Recent negative magnitudes of the AO have increased geopotential thickness west of Greenland and cold weather in the central and eastern United States. Although the increased variance in the AO is statistically significant based on 9-yr running standard deviations from 1950 to 2014, one cannot necessarily robustly attribute the increase to steady changes in external sources (sea temperatures, sea ice) rather than a chaotic view of internal atmospheric variability; this is due to a relatively short record and a review of associated atmospheric dynamics. Although chaotic internal variability dominates the dynamics of atmospheric circulation, Arctic thermodynamic influence can reinforce the regional geopotential height pattern. Such reinforcement suggests a conditional or state dependence on whether an Arctic influence will impact subarctic severe weather, based on different circulation regimes. A key conclusion is the importance of recent variability over potential trends in Arctic and subarctic atmospheric circulation. Continued thermodynamic Arctic changes are suggested as a Bayesian prior leading to a probabilistic approach for potential subarctic weather linkages and the potential for improving seasonal forecasts.

2017 ◽  
Vol 30 (15) ◽  
pp. 5943-5960 ◽  
Author(s):  
Y. Peings ◽  
J. Cattiaux ◽  
S. Vavrus ◽  
Gudrun Magnusdottir

Projected changes in the midlatitude atmospheric circulation at the end of the twenty-first century are investigated using coupled ocean–atmosphere simulations from the Community Earth System Model Large Ensemble (CESM-LENS). Different metrics are used to describe the response of the midlatitude atmospheric dynamics in 40 ensemble members covering the 1920–2100 period. Contrasted responses are identified depending on the season and longitudinal sector that are considered. In winter, a slowdown of the zonal flow and an increase in waviness is found over North America, while the European sector exhibits a reinforced westerly flow and decreased waviness. Extreme temperature events in midlatitudes are more sensitive to thermodynamical than dynamical changes, and a general decrease in the intensity of wintertime cold spells is found. Analyses of individual ensemble members reveal a large spread in circulation changes due to internal variability. Causes for this spread are found to be tied to the Arctic amplification in the Pacific–North American sector and to the polar stratosphere in the North Atlantic. A competition mechanism is also discussed between the midlatitude response to polar versus tropical changes. While the upper-tropospheric tropical warming pushes the jet stream poleward, in winter, Arctic amplification and the weaker polar vortex exert an opposite effect. This competition results in a narrowing of the jet path in the midlatitudes, leading to decreased/unchanged waviness/blockings. This interpretation somewhat reconciles conflicting results between the hypothesized effect of Arctic amplification and projected changes in midlatitude flow characteristics. This study also illustrates that further understanding of regional processes is critical for anticipating changes in the midlatitude dynamics.


2007 ◽  
Vol 20 (16) ◽  
pp. 4243-4254 ◽  
Author(s):  
William J. Gutowski ◽  
Helin Wei ◽  
Charles J. Vörösmarty ◽  
Balázs M. Fekete

Abstract The Arctic’s land surface has large areas of wetlands that exchange moisture, energy, and momentum with the atmosphere. The authors use a mesoscale, pan-Arctic model simulating the summer of 1986 to examine links between the wetlands and arctic atmospheric dynamics and water cycling. Simulations with and without wetlands are compared to simulations using perturbed initial and lateral boundary conditions to delineate when and where the wetlands influence rises above nonlinear internal variability. The perturbation runs expose the temporal variability of the circulation’s sensitivity to changes in lower boundary conditions. For the wetlands cases examined here, the period of the most significant influence is approximately two weeks, and the wetlands do not introduce new circulation changes but rather appear to reinforce and modify existing circulation responses to perturbations. The largest circulation sensitivity, and thus the largest wetlands influence, occurs in central Siberia. The circulation changes induced by adding the wetlands appear as a propagating, equivalent barotropic wave. The wetlands anomaly circulation spreads alterations of surface fluxes to other locations, which undermines the potential for the wetlands to present a distinctive, spatially fixed forcing to atmospheric circulation. Using the climatology of artic synoptic-storm occurrence to indicate when the arctic circulation is most sensitive to altered forcing, the results suggest that the circulation is susceptible to the direct influence of wetlands for a limited time period extending from spring thaw of wetlands until synoptic-storm occurrence diminishes in midsummer. Sensitivities in arctic circulation uncovered through this work occur during a period of substantial transition from a fundamentally frozen to thawed state, a period of major concern for impacts of greenhouse warming on pan-Arctic climate. Changing arctic climate could alter the behavior revealed here.


2014 ◽  
Vol 27 (2) ◽  
pp. 527-550 ◽  
Author(s):  
Justin J. Wettstein ◽  
Clara Deser

Abstract Internal variability in twenty-first-century summer Arctic sea ice loss and its relationship to the large-scale atmospheric circulation is investigated in a 39-member Community Climate System Model, version 3 (CCSM3) ensemble for the period 2000–61. Each member is subject to an identical greenhouse gas emissions scenario and differs only in the atmospheric model component's initial condition. September Arctic sea ice extent trends during 2020–59 range from −2.0 × 106 to −5.7 × 106 km2 across the 39 ensemble members, indicating a substantial role for internal variability in future Arctic sea ice loss projections. A similar nearly threefold range (from −7.0 × 103 to −19 × 103 km3) is found for summer sea ice volume trends. Higher rates of summer Arctic sea ice loss in CCSM3 are associated with enhanced transpolar drift and Fram Strait ice export driven by surface wind and sea level pressure patterns. Over the Arctic, the covarying atmospheric circulation patterns resemble the so-called Arctic dipole, with maximum amplitude between April and July. Outside the Arctic, an atmospheric Rossby wave train over the Pacific sector is associated with internal ice loss variability. Interannual covariability patterns between sea ice and atmospheric circulation are similar to those based on trends, suggesting that similar processes govern internal variability over a broad range of time scales. Interannual patterns of CCSM3 ice–atmosphere covariability compare well with those in nature and in the newer CCSM4 version of the model, lending confidence to the results. Atmospheric teleconnection patterns in CCSM3 suggest that the tropical Pacific modulates Arctic sea ice variability via the aforementioned Rossby wave train. Large ensembles with other coupled models are needed to corroborate these CCSM3-based findings.


2016 ◽  
Vol 29 (15) ◽  
pp. 5609-5616 ◽  
Author(s):  
James E. Overland ◽  
Muyin Wang

Abstract There were extensive regions of Arctic temperature extremes in January and February 2016 that continued into April. For January, the Arctic-wide averaged temperature anomaly was 2.0°C above the previous record of 3.0°C based on four reanalysis products. Midlatitude atmospheric circulation played a major role in producing such extreme temperatures. Extensive low geopotential heights at 700 hPa extended over the southeastern United States, across the Atlantic, and well into the Arctic. Low geopotential heights along the Aleutian Islands and a ridge along northwestern North America contributed southerly wind flow. These two regions of low geopotential height were seen as a major split in the tropospheric polar vortex over the Arctic. Warm air advection north of central Eurasia reinforced the ridge that split the flow near the North Pole. Winter 2015 and 2016 geopotential height fields represented an eastward shift in the longwave atmospheric circulation pattern compared to earlier in the decade (2010–13). Certainly Arctic amplification will continue, and 2016 shows that there can be major Arctic contributions from midlatitudes. Whether Arctic amplification feedbacks are accelerated by the combination of recent thinner, more mobile Arctic sea ice and occasional extreme atmospheric circulation events from midlatitudes is an interesting conjecture.


2018 ◽  
Vol 52 (1) ◽  
pp. 45 ◽  
Author(s):  
Michael Nikolaos Styllas ◽  
Dimitrios Kaskaoutis

The relationship between the winter (DJFM) precipitation and the atmospheric circulation patterns is examined around Mount Olympus, Greece in order to assess the effects of orography and atmospheric dynamics over a small (less than 100 x 100 km) spatial domain. Winter accumulated rainfall datasets from 8 stations spread along the eastern (marine) and western (continental) sides of the Mount Olympus at elevations between 30 m and 1150 m are used during the period 1981 to 2000. Synoptic scale conditions of mean sea-level pressure and geopotential heights at 850 hPa and 500 hPa, were used to explain the multiyear rainfall variability. High pressure systems dominated over the central Mediterranean and most parts of central Europe during the late 1980’s and early 1990’s, are associated with minimum winter rainfall along both sides of Mount Olympus. The winter of 1996 was associated with peak in rainfall along the marine side of the mountain and was characterized by enhancement of upper level trough over the western Mediterranean and increased low tropospheric depressions over the southern Adriatic and the Ionian Seas. This atmospheric circulation pattern facilitated a southeasterly air flow that affected more (less) the marine (continental) sides of the mountain. In contrast, dominance of low pressure systems with cores over the Gulf of Genoa and the Central Mediterranean affect the study area mostly from west/southwest revealing higher correlations with the precipitation in the continental side of the mountain (r= -0.80; Elassona station) and considerably lower correlations with the marine side (r = -0.67; Katerini station). This highlights the orographic barrier of the Mount Olympus revealing large differences between the upward and leeward sides. Large scale atmospheric patterns like the North Atlantic Oscillation and the Arctic Oscillation seem to influence the winter rainfall in the lowlands along the continental side of the mountain.


2021 ◽  
pp. 1-56
Author(s):  
Jakob Dörr ◽  
Marius Årthun ◽  
Tor Eldevik ◽  
Erica Madonna

AbstractThe Arctic winter sea-ice cover is in retreat overlaid by large internal variability. Changes to sea ice are driven by exchange of heat, momentum and freshwater within and between the ocean and the atmosphere. Using a combination of observations and output from the Community Earth System Model Large Ensemble, we analyze and contrast present and future drivers of the regional winter sea-ice cover. Consistent with observations and previous studies, we find that for the recent decades ocean heat transport though the Barents Sea and Bering Strait is a major source of sea-ice variability in the Atlantic and Pacific sectors of the Arctic, respectively. Future projections show a gradually expanding footprint of Pacific and Atlantic inflows highlighting the importance of future Atlantification and Pacification of the Arctic Ocean. While the dominant hemispheric modes of winter atmospheric circulation are only weakly connected to the sea ice, we find distinct local atmospheric circulation patterns associated with present and future regional sea-ice variability in the Atlantic and Pacific sectors, consistent with heat and moisture transport from lower latitudes. Even if the total freshwater input from rivers is projected to increase substantially, its influence on simulated sea ice is small in the context of internal variability.


2021 ◽  
Author(s):  
Sai Wang ◽  
Wen Chen

Abstract The large ensembles of the IPSL-CM6A-LR model output for the historical forcing experiment were employed to investigate the role of internal variability in the formation of the recent “warm Arctic–cold Eurasia” trend pattern in winter surface air temperature (SAT). In the simulations, the winter SAT trends during 1991–2014 display remarkable inter-member diversity over the Barents–Kara Seas region and central Eurasia, suggesting an important role played by internal variability. It is indicated that internally generated SAT trends over the Barents–Kara Seas are induced mainly by the change in local sea surface temperature (SST) trends. Furthermore, we find that the warming trend over the Barents–Kara Seas can induce an anomalous anticyclone over northern Eurasia, which in turn can contribute positively to the warming anomalies over the Barens–Kara Seas, but cannot account for the cooling trend over central Eurasia. The cooling trend over central Eurasia can be attributed to the negative Arctic Oscillation (AO)-like atmospheric circulation pattern, which is independent of the climate change over the Arctic. Therefore, the observed opposite winter SAT trends over the Barents–Kara Seas and central Eurasia arise partly from the linear combination of high SST trends over the Barents–Kara Seas and decline in the winter AO index.


2007 ◽  
Vol 20 (4) ◽  
pp. 765-771 ◽  
Author(s):  
Markus Jochum ◽  
Clara Deser ◽  
Adam Phillips

Abstract Atmospheric general circulation model experiments are conducted to quantify the contribution of internal oceanic variability in the form of tropical instability waves (TIWs) to interannual wind and rainfall variability in the tropical Pacific. It is found that in the tropical Pacific, along the equator, and near 25°N and 25°S, TIWs force a significant increase in wind and rainfall variability from interseasonal to interannual time scales. Because of the stochastic nature of TIWs, this means that climate models that do not take them into account will underestimate the strength and number of extreme events and may overestimate forecast capability.


2017 ◽  
Vol 59 (76pt2) ◽  
pp. 181-190 ◽  
Author(s):  
Thomas J. Ballinger ◽  
Edward Hanna ◽  
Richard J. Hall ◽  
Thomas E. Cropper ◽  
Jeffrey Miller ◽  
...  

ABSTRACTThe Arctic marine environment is undergoing a transition from thick multi-year to first-year sea-ice cover with coincident lengthening of the melt season. Such changes are evident in the Baffin Bay-Davis Strait-Labrador Sea (BDL) region where melt onset has occurred ~8 days decade−1 earlier from 1979 to 2015. A series of anomalously early events has occurred since the mid-1990s, overlapping a period of increased upper-air ridging across Greenland and the northwestern North Atlantic. We investigate an extreme early melt event observed in spring 2013. (~6σ below the 1981–2010 melt climatology), with respect to preceding sub-seasonal mid-tropospheric circulation conditions as described by a daily Greenland Blocking Index (GBI). The 40-days prior to the 2013 BDL melt onset are characterized by a persistent, strong 500 hPa anticyclone over the region (GBI >+1 on >75% of days). This circulation pattern advected warm air from northeastern Canada and the northwestern Atlantic poleward onto the thin, first-year sea ice and caused melt ~50 days earlier than normal. The episodic increase in the ridging atmospheric pattern near western Greenland as in 2013, exemplified by large positive GBI values, is an important recent process impacting the atmospheric circulation over a North Atlantic cryosphere undergoing accelerated regional climate change.


Sign in / Sign up

Export Citation Format

Share Document