scholarly journals Reply to “Comments on ‘A CloudSat–CALIPSO View of Cloud and Precipitation Properties across Cold Fronts over the Global Oceans’”

2018 ◽  
Vol 31 (7) ◽  
pp. 2969-2975 ◽  
Author(s):  
Catherine M. Naud ◽  
Derek J. Posselt ◽  
Susan C. van den Heever

In Naud et al., a compositing method was utilized with CloudSat– CALIPSO observations to obtain mean transects of cloud vertical distribution and surface precipitation across cold fronts, and to examine their sensitivity to the large-scale properties of the parent extratropical cyclone. This reply demonstrates the value of compositing for evaluating numerical models, and presents additional results that address the issue of the sensitivity of the initial results to the frontal detection methodology and the potential misclassification of occlusions as cold fronts. Here a sensitivity study of the cold front composite transects of cloud cover to the input datasets or the method utilized to locate the cold fronts demonstrates that these composite transects are robust and only marginally sensitive to cold front location methods. The same conclusion is reached for the robustness of the contrast between Northern and Southern Hemisphere cloud transects. While occlusions cannot directly be flagged within the database at this point, comparisons of transects obtained for subsets of cyclones of different age indicate that the misclassification of occluded fronts as cold fronts does not explain the predominance of cloud and precipitation on the warm side of the cold fronts. The strong signal on the warm side might be better explained by a predominance of forward sloping cold fronts, or the presence of the warm conveyor belt.

2015 ◽  
Vol 28 (17) ◽  
pp. 6743-6762 ◽  
Author(s):  
Catherine M. Naud ◽  
Derek J. Posselt ◽  
Susan C. van den Heever

Abstract The distribution of cloud and precipitation properties across oceanic extratropical cyclone cold fronts is examined using four years of combined CloudSat radar and CALIPSO lidar retrievals. The global annual mean cloud and precipitation distributions show that low-level clouds are ubiquitous in the postfrontal zone while higher-level cloud frequency and precipitation peak in the warm sector along the surface front. Increases in temperature and moisture within the cold front region are associated with larger high-level but lower mid-/low-level cloud frequencies and precipitation decreases in the cold sector. This behavior seems to be related to a shift from stratiform to convective clouds and precipitation. Stronger ascent in the warm conveyor belt tends to enhance cloudiness and precipitation across the cold front. A strong temperature contrast between the warm and cold sectors also encourages greater post-cold-frontal cloud occurrence. While the seasonal contrasts in environmental temperature, moisture, and ascent strength are enough to explain most of the variations in cloud and precipitation across cold fronts in both hemispheres, they do not fully explain the differences between Northern and Southern Hemisphere cold fronts. These differences are better explained when the impact of the contrast in temperature across the cold front is also considered. In addition, these large-scale parameters do not explain the relatively large frequency in springtime postfrontal precipitation.


2019 ◽  
Vol 36 (12) ◽  
pp. 2471-2482 ◽  
Author(s):  
Jackson Tan ◽  
George J. Huffman ◽  
David T. Bolvin ◽  
Eric J. Nelkin

AbstractAs the U.S. Science Team’s globally gridded precipitation product from the NASA–JAXA Global Precipitation Measurement (GPM) mission, the Integrated Multi-Satellite Retrievals for GPM (IMERG) estimates the surface precipitation rates at 0.1° every half hour using spaceborne sensors for various scientific and societal applications. One key component of IMERG is the morphing algorithm, which uses motion vectors to perform quasi-Lagrangian interpolation to fill in gaps in the passive microwave precipitation field using motion vectors. Up to IMERG V05, the motion vectors were derived from the large-scale motions of infrared observations of cloud tops. This study details the changes introduced in IMERG V06 to derive motion vectors from large-scale motions of selected atmospheric variables in numerical models, which allow IMERG estimates to be extended from the 60°N–60°S latitude band to the entire globe. Evaluation against both instantaneous passive microwave retrievals and ground measurements demonstrates the general improvement in the precipitation field of the new approach. Most of the model variables tested exhibited similar performance, but total precipitable water vapor was chosen as the source of the motion vectors for IMERG V06 due to its competitive performance and global completeness. Continuing assessments will provide further insights into possible refinements of this revised morphing scheme in future versions of IMERG.


2007 ◽  
Vol 20 (2) ◽  
pp. 233-254 ◽  
Author(s):  
Paul R. Field ◽  
Robert Wood

Abstract Composite mean fields and probability distribution functions (PDFs) of rain rate, cloud type and cover, cloud-top temperature, surface wind velocity, and water vapor path (WVP) are constructed using satellite observations of midlatitude cyclones from four oceanic regions (i.e., the North Pacific, South Pacific, North Atlantic, and South Atlantic). Reanalysis surface pressure fields are used to ascertain the locations of the cyclone centers, onto which the satellite fields are interpolated to give a database of ∼1500 cyclones from a two-year period (2003–04). Cyclones are categorized by their strength, defined here using surface wind speed, and by their WVP, and it is found that these two measures can explain a considerable amount of the intercyclone variability of other key variables. Composite cyclones from each of the four ocean basins exhibit similar spatial structure for a given strength and WVP. A set of nine composites is constructed from the database using three strength and three WVP ranges and is used to demonstrate that the mean column relative humidity of these systems varies only slightly (0.58–0.62) for a doubling in WVP (or equivalently a 7-K rise in sea surface temperature) and a 50% increase in cyclone strength. However, cyclone-mean rain rate increases markedly with both cyclone strength and WVP, behavior that is explained with a simple warm conveyor belt model. Systemwide high cloud fraction (tops above 440 hPa) increases from 0.23 to 0.31 as cyclone strength increases by 50%, but does not vary systematically with WVP. It is suggested that the composite fields constitute useful diagnostics for evaluating the behavior of large-scale numerical models, and may provide insight into how precipitation and clouds in midlatitude cyclones respond under a changed climate.


2008 ◽  
Vol 136 (3) ◽  
pp. 784-807 ◽  
Author(s):  
Jason C. Shafer ◽  
W. James Steenburgh

Abstract Motivated by the intensity and severity of winds and temperature falls that frequently accompany rapidly developing cold fronts in northern Utah, this paper presents a 25-yr climatology of strong cold frontal passages over the Intermountain West and adjoining western United States. Using conventional surface observations and the North American Regional Reanalysis, strong cold frontal passages are identified based on a temperature fall of 7°C or greater in a 2–3-h period, a concurrent pressure rise of 3 hPa or greater, and the presence of a large-scale 700-hPa temperature gradient of at least 6°C (500 km)−1. The number of strong cold frontal passages exhibits a strong continental signature with very few events (<10) along the Pacific coast and more than 200 events east of the Continental Divide. The number of events increases dramatically from the Cascade Mountains and Sierra Nevada to northern Utah, indicating that the Intermountain West is a frequent cold front breeding ground. A composite of the 25 strongest events at Salt Lake City (based on the magnitude of the temperature fall) reveals that confluent deformation acting on a broad baroclinic zone over central Nevada commonly initiates Intermountain frontogenesis. The confluent deformation develops in southwesterly large-scale flow and appears to be enhanced by flow deflection around the Sierra Nevada. Quasi-stationary development and intensification of the southwest–northeast-oriented cold front then occurs as a mobile upper-level trough approaches from the west. The front becomes mobile as cold advection and ascent associated with the upper-level trough overtake the low-level front. Cloud and precipitation observations suggest that differential diabatic heating contributes to the rapid frontal intensification in many events.


2019 ◽  
Author(s):  
Annika Oertel ◽  
Maxi Boettcher ◽  
Hanna Joos ◽  
Michael Sprenger ◽  
Heini Wernli

Abstract. Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones. They can influence the large-scale flow evolution due to the modification of the potential vorticity (PV) distribution during their cross-isentropic ascent. Although WCBs are typically described as slantwise ascending and stratiform cloud producing airstreams, recent studies identified convective activity embedded within the large-scale WCB cloud band. Yet, the impacts of this WCB-embedded convection have not been investigated in detail. In this study, we systematically analyse the influence of embedded convection in an eastern North Atlantic WCB on the cloud and precipitation structure, on the PV distribution, and on the larger-scale flow. For this, we apply online trajectories in a high-resolution convection-permitting simulation and perform a composite analysis to compare quasi-vertically ascending convective WCB trajectories with typical slantwise ascending WCB trajectories. We find that the convective WCB ascent leads to stronger surface precipitation including the formation of graupel, which is absent for the slantwise WCB category, indicating the key role of WCB-embedded convection for precipitation extremes. Compared to the slantwise WCB trajectories, the initial equivalent potential temperature of the convective WCB trajectories is higher and they originate from a region of larger potential instability, which gives rise to more intense cloud diabatic processes and stronger cross-isentropic ascent. Moreover, the signature of embedded convection is distinctly imprinted in the PV structure. The diabatically generated low-level positive PV anomalies, associated with a cyclonic circulation anomaly, are substantially stronger for the convective WCB trajectories. While the slantwise WCB trajectories form a wide-spread negative PV anomaly (but still with weakly positive PV values) in the upper troposphere, in agreement with previous studies, the convective WCB trajectories, in contrast, form mesoscale horizontal PV dipoles at upper levels, with one pole reaching negative PV. On the larger-scale, these individual mesoscale PV anomalies can aggregate to elongated PV dipole bands extending from the convective updraft region, which are associated with coherent larger-scale circulation anomalies. An illustrative example of such a convectively generated PV dipole band shows that within around 10 hours the negative PV pole is advected closer to the upper-level waveguide, where it strengthens the isentropic PV gradient and contributes to the formation of a jet streak. This suggests that the mesoscale PV anomalies produced by embedded convection upstream organise and persist for several hours, and therefore can influence the synoptic-scale circulation. They thus can be dynamically relevant. Finally, our results imply that a distinction between slantwise and convective WCB trajectories is meaningful because the convective WCB trajectories are characterized by distinct properties, such as the formation of graupel and of an upper-level PV dipole, which are absent for slantwise WCB trajectories.


2020 ◽  
Vol 1 (1) ◽  
pp. 127-153 ◽  
Author(s):  
Annika Oertel ◽  
Maxi Boettcher ◽  
Hanna Joos ◽  
Michael Sprenger ◽  
Heini Wernli

Abstract. Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones. They can influence large-scale flow evolution by modifying the potential vorticity (PV) distribution during their cross-isentropic ascent. Although WCBs are typically described as slantwise-ascending and stratiform-cloud-producing airstreams, recent studies identified convective activity embedded within the large-scale WCB cloud band. However, the impacts of this WCB-embedded convection have not been investigated in detail. In this study, we systematically analyze the influence of embedded convection in an eastern North Atlantic WCB on the cloud and precipitation structure, on the PV distribution, and on larger-scale flow. For this reason, we apply online trajectories in a high-resolution convection-permitting simulation and perform a composite analysis to compare quasi-vertically ascending convective WCB trajectories with typical slantwise-ascending WCB trajectories. We find that the convective WCB ascent leads to substantially stronger surface precipitation and the formation of graupel in the middle to upper troposphere, which is absent for the slantwise WCB category, indicating the key role of WCB-embedded convection for precipitation extremes. Compared to the slantwise WCB trajectories, the initial equivalent potential temperature of the convective WCB trajectories is higher, and the convective WCB trajectories originate from a region of larger potential instability, which gives rise to more intense cloud diabatic heating and stronger cross-isentropic ascent. Moreover, the signature of embedded convection is distinctly imprinted in the PV structure. The diabatically generated low-level positive PV anomalies, associated with a cyclonic circulation anomaly, are substantially stronger for the convective WCB trajectories. The slantwise WCB trajectories lead to the formation of a widespread region of low-PV air (that still have weakly positive PV values) in the upper troposphere, in agreement with previous studies. In contrast, the convective WCB trajectories form mesoscale horizontal PV dipoles at upper levels, with one pole reaching negative PV values. On a larger scale, these individual mesoscale PV anomalies can aggregate to elongated PV dipole bands extending from the convective updraft region, which are associated with coherent larger-scale circulation anomalies. An illustrative example of such a convectively generated PV dipole band shows that within around 10 h the negative PV pole is advected closer to the upper-level waveguide, where it strengthens the isentropic PV gradient and contributes to the formation of a jet streak. This suggests that the mesoscale PV anomalies produced by embedded convection upstream organize and persist for several hours and therefore can influence the synoptic-scale circulation. They thus can be dynamically relevant, influence the jet stream and (potentially) the downstream flow evolution, which are highly relevant aspects for medium-range weather forecast. Finally, our results imply that a distinction between slantwise and convective WCB trajectories is meaningful because the convective WCB trajectories are characterized by distinct properties.


2016 ◽  
Vol 53 (11) ◽  
pp. 1190-1204 ◽  
Author(s):  
Laurent Jolivet ◽  
Claudio Faccenna ◽  
Philippe Agard ◽  
Dominique Frizon de Lamotte ◽  
Armel Menant ◽  
...  

Since the Mesozoic, Africa has been under extension with shorter periods of compression associated with obduction of ophiolites on its northern margin. Less frequent than “normal” subduction, obduction is a first order process that remains enigmatic. The closure of the Neo-Tethys Ocean, by the Upper Cretaceous, is characterized by a major obduction event, from the Mediterranean region to the Himalayas, best represented around the Arabian Plate, from Cyprus to Oman. These ophiolites were all emplaced in a short time window in the Late Cretaceous, from ∼100 to 75 Ma, on the northern margin of Africa, in a context of compression over large parts of Africa and Europe, across the convergence zone. The scale of this process requires an explanation at the scale of several thousands of kilometres along strike, thus probably involving a large part of the convecting mantle. We suggest that alternating extension and compression in Africa could be explained by switching convection regimes. The extensional situation would correspond to steady-state whole-mantle convection, Africa being carried northward by a large-scale conveyor belt, while compression and obduction would occur when the African slab penetrates the upper–lower mantle transition zone and the African plate accelerates due to increasing plume activity, until full penetration of the Tethys slab in the lower mantle across the 660 km transition zone during a 25 Myr long period. The long-term geological archives on which such scenarios are founded can provide independent time constraints for testing numerical models of mantle convection and slab–plume interactions.


2020 ◽  
Author(s):  
Martin Reiss ◽  
Peter MacNeice ◽  
Karin Muglach ◽  
Nick Arge ◽  
Christian Möstl ◽  
...  

<p><span>The ambient solar wind flows and fields influence the complex propagation dynamics of coronal mass ejections in the interplanetary medium and play an essential role in shaping Earth's space weather environment. A critical scientific goal in the space weather research and prediction community is to develop, implement and optimize numerical models for specifying the large-scale properties of solar wind conditions at the inner boundary of the heliospheric model domain. Here we present an adaptive prediction system that fuses information from in situ measurements of the solar wind into numerical models to better match the global solar wind model solutions near the Sun with prevailing physical conditions in the vicinity of Earth. In this way, we attempt to advance the predictive capabilities of well-established solar wind models such as the Wang-Sheeley-Arge model. We perform a statistical analysis of the resulting solar wind predictions for the years 2006 to 2015. The proposed prediction scheme improves all the coronal/heliospheric model combinations investigated by approximately 15-20 percent in terms of various comprehensive prediction validation measures. We discuss why this is the case, and conclude that our findings have important implications for future practice in applied space weather research and prediction.</span></p>


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 176
Author(s):  
Iñigo Aramendia ◽  
Unai Fernandez-Gamiz ◽  
Adrian Martinez-San-Vicente ◽  
Ekaitz Zulueta ◽  
Jose Manuel Lopez-Guede

Large-scale energy storage systems (ESS) are nowadays growing in popularity due to the increase in the energy production by renewable energy sources, which in general have a random intermittent nature. Currently, several redox flow batteries have been presented as an alternative of the classical ESS; the scalability, design flexibility and long life cycle of the vanadium redox flow battery (VRFB) have made it to stand out. In a VRFB cell, which consists of two electrodes and an ion exchange membrane, the electrolyte flows through the electrodes where the electrochemical reactions take place. Computational Fluid Dynamics (CFD) simulations are a very powerful tool to develop feasible numerical models to enhance the performance and lifetime of VRFBs. This review aims to present and discuss the numerical models developed in this field and, particularly, to analyze different types of flow fields and patterns that can be found in the literature. The numerical studies presented in this review are a helpful tool to evaluate several key parameters important to optimize the energy systems based on redox flow technologies.


2021 ◽  
Vol 9 (6) ◽  
pp. 635
Author(s):  
Hyeok Jin ◽  
Kideok Do ◽  
Sungwon Shin ◽  
Daniel Cox

Coastal dunes are important morphological features for both ecosystems and coastal hazard mitigation. Because understanding and predicting dune erosion phenomena is very important, various numerical models have been developed to improve the accuracy. In the present study, a process-based model (XBeachX) was tested and calibrated to improve the accuracy of the simulation of dune erosion from a storm event by adjusting the coefficients in the model and comparing it with the large-scale experimental data. The breaker slope coefficient was calibrated to predict cross-shore wave transformation more accurately. To improve the prediction of the dune erosion profile, the coefficients related to skewness and asymmetry were adjusted. Moreover, the bermslope coefficient was calibrated to improve the simulation performance of the bermslope near the dune face. Model performance was assessed based on the model-data comparisons. The calibrated XBeachX successfully predicted wave transformation and dune erosion phenomena. In addition, the results obtained from other two similar experiments on dune erosion with the same calibrated set matched well with the observed wave and profile data. However, the prediction of underwater sand bar evolution remains a challenge.


Sign in / Sign up

Export Citation Format

Share Document