scholarly journals Circumglobal Response to Prescribed Soil Moisture over North America

2019 ◽  
Vol 32 (14) ◽  
pp. 4525-4545 ◽  
Author(s):  
Haiyan Teng ◽  
Grant Branstator ◽  
Ahmed B. Tawfik ◽  
Patrick Callaghan

Abstract A series of idealized prescribed soil moisture experiments is performed with the atmosphere/land stand-alone configuration of the Community Earth System Model, version 1, in an effort to find sources of predictability for high-impact stationary wave anomalies observed in recent boreal summers. We arbitrarily prescribe soil water to have a zero value at selected domains in the continental United States and run 100-member ensembles to examine the monthly and seasonal mean response. Contrary to the lack of a substantial response in the boreal winter, the summertime circulation response is robust, consistent, and circumglobal. While the stationary wave response over the North America and North Atlantic sectors can be well explained by the reaction of a linear dynamical system to heating anomalies caused by the imposed dry land surface, nonlinear processes involving synoptic eddies play a crucial role in forming the remote response in Eurasia and the North Pacific Ocean. A number of other possible factors contributing to the circulation responses are also discussed. Overall, the experiments suggest that, in the boreal summer, soil moisture may contribute to the predictability of high-impact stationary wave events, which can impact regions that are great distances from these source regions.

2021 ◽  
Vol 25 (1) ◽  
pp. 94-107
Author(s):  
M. C. A. Torbenson ◽  
D. W. Stahle ◽  
I. M. Howard ◽  
D. J. Burnette ◽  
D. Griffin ◽  
...  

Abstract Season-to-season persistence of soil moisture drought varies across North America. Such interseasonal autocorrelation can have modest skill in forecasting future conditions several months in advance. Because robust instrumental observations of precipitation span less than 100 years, the temporal stability of the relationship between seasonal moisture anomalies is uncertain. The North American Seasonal Precipitation Atlas (NASPA) is a gridded network of separately reconstructed cool-season (December–April) and warm-season (May–July) precipitation series and offers new insights on the intra-annual changes in drought for up to 2000 years. Here, the NASPA precipitation reconstructions are rescaled to represent the long-term soil moisture balance during the cool season and 3-month-long atmospheric moisture during the warm season. These rescaled seasonal reconstructions are then used to quantify the frequency, magnitude, and spatial extent of cool-season drought that was relieved or reversed during the following summer months. The adjusted seasonal reconstructions reproduce the general patterns of large-scale drought amelioration and termination in the instrumental record during the twentieth century and are used to estimate relief and reversals for the most skillfully reconstructed past 500 years. Subcontinental-to-continental-scale reversals of cool-season drought in the following warm season have been rare, but the reconstructions display periods prior to the instrumental data of increased reversal probabilities for the mid-Atlantic region and the U.S. Southwest. Drought relief at the continental scale may arise in part from macroscale ocean–atmosphere processes, whereas the smaller-scale regional reversals may reflect land surface feedbacks and stochastic variability.


2021 ◽  
Vol 144 (1-2) ◽  
pp. 363-377
Author(s):  
Jiangnan Li ◽  
Zhian Sun ◽  
Feng Zhang

AbstractThe autocorrelation function (ACF) and its finite Fourier transform, referred to as signal energy, have been investigated using the ECMWF daily surface temperature data. ACF itself provides a measure of the influence of leading fluctuation between two different time points. Considering the decay of ACF, it is found that the scaling power-rule of ACF is only valid in a very short period, as the decay of ACF exists before it reaches a random noise state. Therefore, the method of the critical exponent of ACF is limited in the short length of the temporal interval. On the other hand, the distributions of the signal energy always show nice patterns, indicating the degree of persistence change. It is found, for a short period, that the distributions of the signal energy and the critical exponent are very similar, with a correlation coefficient over 0.97. For a longer period, though the critical exponent of ACF becomes invalid, the signal energy can always provide an effective method to investigate climate persistence in different lengths of time. In a 5-day period of boreal winter, the southern part of North America has a larger value of signal energy compared to the northern part; thus, the surface temperature is more stable in the north part. The result becomes opposite in the boreal summer. The method of signal energy can also be applied to a particular interval of time. In different temporal intervals, the signal energy presents very different results, especially over the El Nino regions


2020 ◽  
Vol 33 (5) ◽  
pp. 1691-1706 ◽  
Author(s):  
Shizuo Liu ◽  
Qigang Wu ◽  
Steven R. Schroeder ◽  
Yonghong Yao ◽  
Yang Zhang ◽  
...  

AbstractPrevious studies show that there are substantial influences of winter–spring Tibetan Plateau (TP) snow anomalies on the Asian summer monsoon and that autumn–winter TP heavy snow can lead to persisting hemispheric Pacific–North America-like responses. This study further investigates global atmospheric responses to realistic extensive spring TP snow anomalies using observations and ensemble transient model integrations. Model ensemble simulations are forced by satellite-derived observed March–May TP snow cover extent and snow water equivalent in years with heavy or light TP snow. Heavy spring TP snow causes simultaneous significant local surface cooling and precipitation decreases over and near the TP snow anomaly. Distant responses include weaker surface cooling over most Asian areas surrounding the TP, a weaker drying band extending east and northeast into the North Pacific Ocean, and increased precipitation in a region surrounding this drying band. Also, there is tropospheric cooling from the TP into the North Pacific and over most of North America and the North Atlantic Ocean. The TP snow anomaly induces a negative North Pacific Oscillation/western Pacific–like teleconnection response throughout the troposphere and stratosphere. Atmospheric responses also include significantly increased Pacific trade winds, a strengthened intertropical convergence zone over the equatorial Pacific Ocean, and an enhanced local Hadley circulation. This result suggests a near-global impact of the TP snow anomaly in nearly all seasons.


2012 ◽  
Vol 140 (9) ◽  
pp. 2967-2981 ◽  
Author(s):  
Andrea Schneidereit ◽  
Silke Schubert ◽  
Pavel Vargin ◽  
Frank Lunkeit ◽  
Xiuhua Zhu ◽  
...  

Abstract Several studies show that the anomalous long-lasting Russian heat wave during the summer of 2010, linked to a long-persistent blocking high, appears mainly as a result of natural atmospheric variability. This study analyzes the large-scale flow structure based on the ECMWF Re-Analysis Interim (ERA-Interim) data (1989–2010). The anomalous long-lasting blocking high over western Russia including the heat wave occurs as an overlay of a set of anticyclonic contributions on different time scales. (i) A regime change in ENSO toward La Niña modulates the quasi-stationary wave structure in the boreal summer hemisphere supporting the eastern European blocking. The polar Arctic dipole mode is enhanced and shows a projection on the mean blocking high. (ii) Together with the quasi-stationary wave anomaly, the transient eddies maintain the long-lasting blocking. (iii) Three different pathways of wave action are identified on the intermediate time scale (~10–60 days). One pathway commences over the eastern North Pacific and includes the polar Arctic region; another one runs more southward and crossing the North Atlantic, continues to eastern Europe; a third pathway southeast of the blocking high describes the downstream development over South Asia.


2016 ◽  
Vol 29 (20) ◽  
pp. 7345-7364 ◽  
Author(s):  
Randal D. Koster ◽  
Yehui Chang ◽  
Hailan Wang ◽  
Siegfried D. Schubert

Abstract A series of stationary wave model (SWM) experiments are performed in which the boreal summer atmosphere is forced, over a number of locations in the continental United States, with an idealized diabatic heating anomaly that mimics the atmospheric heating associated with a dry land surface. For localized heating within a large portion of the continental interior, regardless of the specific location of this heating, the spatial pattern of the forced atmospheric circulation anomaly (in terms of 250-hPa eddy streamfunction) is largely the same: a high anomaly forms over west-central North America and a low anomaly forms to the east. In supplemental atmospheric general circulation model (AGCM) experiments, similar results are found; imposing soil moisture dryness in the AGCM in different locations within the U.S. interior tends to produce the aforementioned pattern, along with an associated near-surface warming and precipitation deficit in the center of the continent. The SWM-based and AGCM-based patterns generally agree with composites generated using reanalysis and precipitation gauge data. The AGCM experiments also suggest that dry anomalies imposed in the lower Mississippi River valley have remote surface impacts of particularly large spatial extent, and a region along the eastern half of the U.S.–Canadian border is particularly sensitive to dry anomalies in a number of remote areas. Overall, the SWM and AGCM experiments support the idea of a positive feedback loop operating over the continent: dry surface conditions in many interior locations lead to changes in atmospheric circulation that act to enhance further the overall dryness of the continental interior.


2021 ◽  
pp. 1-34
Author(s):  
Douglas E. Miller ◽  
Zhuo Wang ◽  
Bo Li ◽  
Daniel S. Harnos ◽  
Trent Ford

AbstractSkillful subseasonal prediction of extreme heat and precipitation greatly benefits multiple sectors, including water management, public health, and agriculture, in mitigating the impact of extreme events. A statistical model is developed to predict the weekly frequency of extreme warm days and 14-day standardized precipitation index (SPI) during boreal summer in the United States (US). We use a leading principal component of US soil moisture and an index based on the North Pacific sea surface temperature (SST) as predictors. The model outperforms the NCEP’s Climate Forecast System version 2 (CFSv2) at weeks 3-4 in the eastern US. It is found that the North Pacific SST anomalies persist several weeks and are associated with a persistent wave train pattern (WTZ500), which leads to increased occurrences of blocking and extreme temperature over the eastern US. Extreme dry soil moisture conditions persist into week 4 and are associated with an increase in sensible heat flux and decrease in latent heat flux, which may help maintain the overlying anticyclone. The clear sky conditions associated with blocking anticyclones further decrease soil moisture conditions and increase the frequency of extreme warm days. This skillful statistical model has the potential to aid in irrigation scheduling, crop planning, reservoir operation, and provide mitigation of impacts from extreme heat events.


2019 ◽  
Vol 32 (4) ◽  
pp. 1081-1099 ◽  
Author(s):  
Hailan Wang ◽  
Siegfried D. Schubert ◽  
Randal D. Koster ◽  
Yehui Chang

Past modeling simulations, supported by observational composites, indicate that during boreal summer, dry soil moisture anomalies in very different locations within the U.S. continental interior tend to induce the same upper-tropospheric circulation pattern: a high anomaly forms over west-central North America and a low anomaly forms to the east. The present study investigates the causes of this apparent phase locking of the upper-level circulation response and extends the investigation to other land regions in the Northern Hemisphere. The phase locking over North America is found to be induced by zonal asymmetries in the local basic state originating from North American orography. Specifically, orography-induced zonal variations of air temperature, those in the lower troposphere in particular, and surface pressure play a dominant role in placing the soil moisture–forced negative Rossby wave source (dominated by upper-level divergence anomalies) over the eastern leeside of the Western Cordillera, which subsequently produces an upper-level high anomaly over west-central North America, with the downstream anomalous circulation responses phase locked by continuity. The zonal variations of the local climatological atmospheric circulation, manifested as a climatological high over central North America, help shape the spatial pattern of the upper-level circulation responses. Considering the rest of the Northern Hemisphere, the northern Middle East exhibits similar phase locking, also induced by local orography. The Middle Eastern phase locking, however, is not as pronounced as that over North America; North America is where soil moisture anomalies have the greatest impact on the upper-tropospheric circulation.


2019 ◽  
Vol 20 (4) ◽  
pp. 751-771 ◽  
Author(s):  
Richard Seager ◽  
Jennifer Nakamura ◽  
Mingfang Ting

AbstractMechanisms of drought onset and termination are examined across North America with a focus on the southern Plains using data from land surface models and regional and global reanalyses for 1979–2017. Continental-scale analysis of covarying patterns reveals a tight coupling between soil moisture change over time and intervening precipitation anomalies. The southern Great Plains are a geographic center of patterns of hydrologic change. Drying is induced by atmospheric wave trains that span the Pacific and North America and place northerly flow anomalies above the southern Plains. In the southern Plains winter is least likely, and fall most likely, for drought onset and spring is least likely, and fall or summer most likely, for drought termination. Southern Plains soil moisture itself, which integrates precipitation over time, has a clear relationship to tropical Pacific sea surface temperature (SST) anomalies with cold conditions favoring dry soils. Soil moisture change, however, though clearly driven by precipitation, has a weaker relation to SSTs and a strong relation to internal atmospheric variability. Little evidence is found of connection of drought onset and termination to driving by temperature anomalies. An analysis of particular drought onsets and terminations on the seasonal time scale reveals commonalities in terms of circulation and moisture transport anomalies over the southern Plains but a variety of ways in which these are connected into the large-scale atmosphere and ocean state. Some onsets are likely to be quite predictable due to forcing by cold tropical Pacific SSTs (e.g., fall 2010). Other onsets and all terminations are likely not predictable in terms of ocean conditions.


Author(s):  
Robert R. Richwine ◽  
G. Scott Stallard ◽  
G. Michael Curley

In recent years some power companies have instituted programs aimed at reducing or eliminating their power plants’ unreliability caused by abnormal events that occur infrequently but result in extended unplanned outages when they do occur, i.e. High Impact–Low Probability events (HILPs). HILPs include catastrophic events such as turbine water induction, boiler explosions, generator winding failures, etc. Many of these successful programs have relied on the detailed reliability data contained in the North American Electric Reliability Corporation’s (NERC) Generating Availability Data System (GADS) that contains data collected over the past 25 years from 5000+ generating units in North America. Using this data, these companies have been able to 1) benchmark their fleet’s unreliability due to HILPs against their North American peers, 2) prioritize their peer group’s susceptibility to various HILP modes and 3) use root cause data contained within the NERC-GADS data base to help identify and evaluate ways to proactively prevent, detect and/or mitigate the consequences of HILP events. This paper will describe the methods used in these successful programs in sufficient detail to enable others to adopt the techniques for application at their own generating plants.


Sign in / Sign up

Export Citation Format

Share Document