scholarly journals Regional Differences in the Response of Rainfall to Convectively Coupled Kelvin Waves over Tropical Africa

2019 ◽  
Vol 32 (23) ◽  
pp. 8143-8165 ◽  
Author(s):  
Lawrence S. Jackson ◽  
Richard J. Keane ◽  
Declan L. Finney ◽  
John H. Marsham ◽  
Douglas J. Parker ◽  
...  

Abstract The representation of convection remains one of the most important sources of bias in global models, and evaluation methods are needed that show that models provide the correct mean state and variability, both for the correct reasons. Here we develop a novel approach for evaluating rainfall variability due to convectively coupled Kelvin waves (CCKWs) in this region. A phase cycle was defined for the CCKW cycle in OLR and used to composite rainfall anomalies. We characterize the observed (TRMM) rainfall response to CCKWs over tropical Africa in April and evaluate the performance of regional climate model (RCM) simulations: a parameterized convection simulation (P25) and the first pan-Africa convection-permitting simulation (CP4). TRMM mean rainfall is enhanced and suppressed by CCKW activity, and the occurrence of extreme rainfall and dry days is coupled with CCKW activity. Focusing on regional differences, we show for the first time that there is a dipole between West Africa and the Gulf of Guinea involving onshore/offshore shifts in rainfall, and the transition to enhanced rainfall over west equatorial Africa occurs one phase before the transition over east equatorial Africa. The global model used to drive the RCMs simulated CCKWs with mean amplitudes of 75%–82% of observations. The RCMs simulated coherent responses to the CCKWs and captured the large-scale spatial patterns and phase relationships in rainfall although the simulated rainfall response is weaker than observations and there are regional biases that are bigger away from the equator. P25 produced a closer match to TRMM mean rainfall anomalies than CP4 although the response in dry days was more closely simulated by CP4.

2020 ◽  
Author(s):  
Juan Pablo Sierra ◽  
Clementine Junquas ◽  
Jhan Carlo Epinoza ◽  
Thierry Lebel ◽  
Hans Segura

<p><span>The western Amazon and eastern flank of the Andes form what is known as the Amazon-Andes transition region. This region is characterized by the presence of the rainiest area in the Amazon basin with an average precipitation ranging from 6000 to 7000 mm per year. This rainy zone is the result of interactions between large-scale circulation and local features. However, the physical mechanisms controlling this rainfall patterns in the transition region are poorly understood. On the other hand, high precipitation values in the area, along with erosion, sediment transport and the geological mountain uplift help to explain this region as one of the most species-rich terrestrial ecosystems. Nevertheless, accelerated deforestation rates reported both in tropical Andes and central-southern Amazon threat the biodiversity hotspots and can induce alterations in land surface energy and water balances. In this context, the use of regional climate models can shed light on the possible consequences of deforestation on rainfall in the transition region. </span></p><p><span>The early results presented here are the first step in a work that seeks to gain a better understanding in the mechanisms involved in precipitation generation over the Amazon-Andes transition region, as well as the assessment of deforestation impacts on spatial and temporal rainfall variability during austral summer. The Weather Research and Forecasting (WRF) regional climate model is used with three nested domains. High resolution simulations (1km horizontal grid size) are performed over the key regions of Cuzco and Bolivian slopes. As a perspective,<span>  </span>deforestation scenarios following the land use change trajectory observed during the last decade will be used in future works. The results of this work can help to dimension the consequences of deforestation on key ecosystems such as Andean hotspots.</span></p>


2012 ◽  
Vol 25 (20) ◽  
pp. 7232-7247 ◽  
Author(s):  
Jason P. Evans ◽  
Seth Westra

Abstract This study investigates the ability of a regional climate model (RCM) to simulate the diurnal cycle of precipitation over southeast Australia, to provide a basis for understanding the mechanisms that drive diurnal variability. When compared with 195 observation gauges, the RCM tends to simulate too many occurrences and too little intensity for precipitation events at the 3-hourly time scale. However, the overall precipitation amounts are well simulated and the diurnal variability in occurrences and intensities are generally well reproduced, particularly in spring and summer. In terms of precipitation amounts, the RCM overestimated the diurnal cycle during the warmer months but was reasonably accurate during winter. The timing of the maxima and minima was found to match the observed timings well. The spatial pattern of diurnal variability in the Weather Research and Forecasting model outputs was remarkably similar to the observed record, capturing many features of regional variability. The RCM diurnal cycle was dominated by the convective (subgrid scale) precipitation. In the RCM the diurnal cycle of convective precipitation over land corresponds well to atmospheric instability and thermally triggered convection over large areas, and also to the large-scale moisture convergence at 700 hPa along the east coast, with the strongest diurnal cycles present where these three mechanisms are in phase.


Author(s):  
He Sun ◽  
Fengge Su ◽  
Zhihua He ◽  
Tinghai Ou ◽  
Deliang Chen ◽  
...  

AbstractIn this study, two sets of precipitation estimates based on the regional Weather Research and Forecasting model (WRF) –the high Asia refined analysis (HAR) and outputs with a 9 km resolution from WRF (WRF-9km) are evaluated at both basin and point scales, and their potential hydrological utilities are investigated by driving the Variable Infiltration Capacity (VIC) large-scale land surface hydrological model in seven Third Pole (TP) basins. The regional climate model (RCM) tends to overestimate the gauge-based estimates by 20–95% in annual means among the selected basins. Relative to the gauge observations, the RCM precipitation estimates can accurately detect daily precipitation events of varying intensities (with absolute bias < 3 mm). The WRF-9km exhibits a high potential for hydrological application in the monsoon-dominated basins in the southeastern TP (with NSE of 0.7–0.9 and bias of -11% to 3%), while the HAR performs well in the upper Indus (UI) and upper Brahmaputra (UB) basins (with NSE of 0.6 and bias of -15% to -9%). Both the RCM precipitation estimates can accurately capture the magnitudes of low and moderate daily streamflow, but show limited capabilities in flood prediction in most of the TP basins. This study provides a comprehensive evaluation of the strength and limitation of RCMs precipitation in hydrological modeling in the TP with complex terrains and sparse gauge observations.


2017 ◽  
Vol 10 (3) ◽  
pp. 1383-1402 ◽  
Author(s):  
Paolo Davini ◽  
Jost von Hardenberg ◽  
Susanna Corti ◽  
Hannah M. Christensen ◽  
Stephan Juricke ◽  
...  

Abstract. The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth system model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125 up to 16 km). The project includes more than 120 simulations in both a historical scenario (1979–2008) and a climate change projection (2039–2068), together with coupled transient runs (1850–2100). A total of 20.4 million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5 PB of output data have been produced on SuperMUC IBM Petascale System at the Leibniz Supercomputing Centre (LRZ) in Garching, Germany. About 140 TB of post-processed data are stored on the CINECA supercomputing centre archives and are freely accessible to the community thanks to an EUDAT data pilot project. This paper presents the technical and scientific set-up of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given. An improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increase is observed. It is also shown that including stochastic parameterisation in the low-resolution runs helps to improve some aspects of the tropical climate – specifically the Madden–Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small-scale processes on the large-scale climate variability either explicitly (with high-resolution simulations) or stochastically (in low-resolution simulations).


2021 ◽  
Author(s):  
Antoine Doury ◽  
Samuel Somot ◽  
Sébastien Gadat ◽  
Aurélien Ribes ◽  
Lola Corre

Abstract Providing reliable information on climate change at local scale remains a challenge of first importance for impact studies and policymakers. Here, we propose a novel hybrid downscaling method combining the strengths of both empirical statistical downscaling methods and Regional Climate Models (RCMs). The aim of this tool is to enlarge the size of high-resolution RCM simulation ensembles at low cost.We build a statistical RCM-emulator by estimating the downscaling function included in the RCM. This framework allows us to learn the relationship between large-scale predictors and a local surface variable of interest over the RCM domain in present and future climate. Furthermore, the emulator relies on a neural network architecture, which grants computational efficiency. The RCM-emulator developed in this study is trained to produce daily maps of the near-surface temperature at the RCM resolution (12km). The emulator demonstrates an excellent ability to reproduce the complex spatial structure and daily variability simulated by the RCM and in particular the way the RCM refines locally the low-resolution climate patterns. Training in future climate appears to be a key feature of our emulator. Moreover, there is a huge computational benefit in running the emulator rather than the RCM, since training the emulator takes about 2 hours on GPU, and the prediction is nearly instantaneous. However, further work is needed to improve the way the RCM-emulator reproduces some of the temperature extremes, the intensity of climate change, and to extend the proposed methodology to different regions, GCMs, RCMs, and variables of interest.


2008 ◽  
Vol 21 (5) ◽  
pp. 963-979 ◽  
Author(s):  
Yoo-Bin Yhang ◽  
Song-You Hong

Abstract This paper documents the sensitivity of the modeled evolution of the East Asian summer monsoon (EASM) to physical parameterization using the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM). To this end, perfect boundary condition experiments driven by analysis data are designed for August 2003 to investigate the individual role of the surface processes, boundary layer, and convection parameterization on the simulated monsoon. Also, 10-yr June–August (JJA) simulations from 1996 to 2005 are performed to evaluate the overall impacts of these revisions on the simulated EASM climatology. The one-month simulation for August 2003 reveals that the experiment with a realistic distribution of land use conditions and vegetation and smaller thermal roughness length simulates higher temperature and geopotential height. On the other hand, in the experiment with an improved boundary layer scheme, the rainfall amount is slightly decreased due to reduced vertical mixing. The simulation with revised subgrid-scale processes in the cumulus parameterization scheme reproduces a rainband over the subtropics, which is weakly simulated by the default package. The overall large-scale distribution from the experiment, which includes all three revised physics processes, shows the same direction as that of the revised convection run in the middle and upper troposphere, but is improved further when other newly enhanced processes are combined. These improvements are also achieved in a 10-yr summer simulation. It is distinct that the revised physics package improves the large-scale patterns by strengthening the intensity of the North Pacific high and reducing the intensity of the lower-level jet, which are critical components in the EASM. The general patterns of the interannual and intraseasonal variation of precipitation are also improved, in particular, over land.


2007 ◽  
Vol 8 (4) ◽  
pp. 738-757 ◽  
Author(s):  
Song Yang ◽  
S-H. Yoo ◽  
R. Yang ◽  
K. E. Mitchell ◽  
H. van den Dool ◽  
...  

Abstract This study employs the NCEP Eta Regional Climate Model to investigate the response of the model’s seasonal simulations of summer precipitation to high-frequency variability of soil moisture. Specifically, it focuses on the response of model precipitation and temperature over the U.S. Midwest and Southeast to imposed changes in the diurnal and synoptic variability of soil moisture in 1988 and 1993. High-frequency variability of soil moisture increases (decreases) precipitation in the 1988 drought (1993 flood) year in the central and southern-tier states, except along the Gulf Coast, but causes smaller changes in precipitation along the northern-tier states. The diurnal variability and synoptic variability of soil moisture produce similar patterns of precipitation change, indicating the importance of the diurnal cycle of land surface process. The increase (decrease) in precipitation is generally accompanied by a decrease (increase) in surface and lower-tropospheric temperatures, and the changes in precipitation and temperature are attributed to both the local effect of evaporation feedback and the remote influence of large-scale water vapor transport. The precipitation increase and temperature decrease in 1988 are accompanied by an increase in local evaporation and, more importantly, by an increase in the large-scale water vapor convergence into the Midwest and Southeast. Analogous but opposite-sign behavior occurs in 1993 (compared to 1988) in changes in precipitation, temperature, soil moisture, evaporation, and large-scale water vapor transport. Results also indicate that, in regions where the model simulates the diurnal cycle of soil moisture reasonably well, including this diurnal cycle in the simulations improves model performance. However, no notable improvement in model precipitation can be found in regions where the model fails to realistically simulate the diurnal variability of soil moisture.


2015 ◽  
Vol 9 (5) ◽  
pp. 1831-1844 ◽  
Author(s):  
B. Noël ◽  
W. J. van de Berg ◽  
E. van Meijgaard ◽  
P. Kuipers Munneke ◽  
R. S. W. van de Wal ◽  
...  

Abstract. We discuss Greenland Ice Sheet (GrIS) surface mass balance (SMB) differences between the updated polar version of the RACMO climate model (RACMO2.3) and the previous version (RACMO2.1). Among other revisions, the updated model includes an adjusted rainfall-to-snowfall conversion that produces exclusively snowfall under freezing conditions; this especially favours snowfall in summer. Summer snowfall in the ablation zone of the GrIS has a pronounced effect on melt rates, affecting modelled GrIS SMB in two ways. By covering relatively dark ice with highly reflective fresh snow, these summer snowfalls have the potential to locally reduce melt rates in the ablation zone of the GrIS through the snow-albedo-melt feedback. At larger scales, SMB changes are driven by differences in orographic precipitation following a shift in large-scale circulation, in combination with enhanced moisture to precipitation conversion for warm to moderately cold conditions. A detailed comparison of model output with observations from automatic weather stations, ice cores and ablation stakes shows that the model update generally improves the simulated SMB-elevation gradient as well as the representation of the surface energy balance, although significant biases remain.


Sign in / Sign up

Export Citation Format

Share Document