scholarly journals Climatological Description of Seasonal Variations in Lower-Tropospheric Temperature Inversion Layers over the Indochina Peninsula

2006 ◽  
Vol 19 (13) ◽  
pp. 3307-3319 ◽  
Author(s):  
Masato I. Nodzu ◽  
Shin-Ya Ogino ◽  
Yoshihiro Tachibana ◽  
Manabu D. Yamanaka

Abstract In this study operational rawinsonde data are used to investigate climatological features of seasonal variations in static stability in order to understand the behavior of temperature inversion layers, that is, extremely stable layers in the lower troposphere over the Indochina Peninsula region, at the southeastern edge of the Asian continent. Static stability was evaluated from the vertical gradient in potential temperature (Δθ/Δz). Stable (Δθ/Δz > 10 K km−1) and unstable (Δθ/Δz < 1 K km−1) layers frequently appear over the Indochina Peninsula region during boreal winter. Temporal and vertical variations in stability during the boreal winter can be categorized into three characteristic types, type I: the mean height of stable layers increases from 2 to 5 km from the dry to the rainy season over inland areas of the Indochina Peninsula and southern China; type II: similar to type I, with the additional occurrence of stable layers at a height of ∼1 km, mainly over coastal areas of the Indochina Peninsula; and type III: stable layers at a height of ∼2 km, mainly over the Malay Peninsula. We did not find any significant seasonal change in the vertical distribution of stable layers over the Malay Peninsula.

2009 ◽  
Vol 9 (13) ◽  
pp. 4467-4483 ◽  
Author(s):  
M. T. Prtenjak ◽  
A. Jeričević ◽  
L. Kraljević ◽  
I. H. Bulić ◽  
T. Nitis ◽  
...  

Abstract. Stable atmospheric conditions are often connected with the occurrence of high pollution episodes especially in urban or industrial areas. In this work we investigate a severe SO2 episode observed on 3–5 February 2002 in a coastal industrial town of Rijeka, Croatia, where very high daily mean concentrations (up to 353.5 μg m−3) were measured. The episode occurred under high air pressure conditions, which were accompanied with a fog and low wind speeds. Three air quality models (50-km EMEP model, 10-km EMEP4HR model and 1-km CAMx model) were used to simulate SO2 concentrations fields and to evaluate the relative contribution of distant and local pollution sources to observed concentrations. Results suggest that the episode was caused predominately by local sources. Furthermore, using three-dimensional, higher-order turbulence closure mesoscale meteorological model (WRF), the wind regimes and thermo-dynamical structure of the lower troposphere above the greater Rijeka area (GRA) were examined in detail. Modelled atmospheric fields suggest several factors whose simultaneous acting was responsible for elevated SO2 concentrations. Established small scale wind directions supported the transport of air from nearby industrial areas with major pollution sources towards Rijeka. This transport was associated with strong, ground-based temperature inversion and correspondingly, very low mixing layer (at most up to about 140 m). Additionally, the surface winds in Rijeka were light or almost calm thus, preventing ventilation of polluted air. Finally, a vertical circulation cell formed between the mainland and a nearby island, supported the air subsidence and the increase of static stability.


2011 ◽  
Vol 24 (13) ◽  
pp. 3211-3223 ◽  
Author(s):  
Masato I. Nodzu ◽  
Shin-Ya Ogino ◽  
Manabu D. Yamanaka

Abstract The authors performed a thermal budget analysis to understand the nature of seasonal changes in stable lower-troposphere layers over the inland region of the Indochina Peninsula, using atmospheric reanalysis data. The analysis focuses on subseasonal stable layers. Stability increase in the generation of stable layers is classified into three dominant thermal factors: vertical differences in horizontal potential temperature advection, vertical potential temperature advection, and their residual component Q1. The largest contributor to the stability increase is defined as the dominant thermal factor. Climatological typical heights where stable layers most frequently appear are the 850–700-, 700–600-, and 600–500-hPa levels in November–January, February–March, and April, respectively, according to a previous study. From November to January, most of the stable layers in the typical height are generated by vertical differences in horizontal potential temperature advection. Their generation (dissipation) is characterized by strong (weak) cooling due to horizontal advection below the stable layers. The strong cooling is related to cold surges in the winter monsoon. Generation of the stable layers in the typical height from February to April is characterized by vertical differences in Q1. Here, Q1 cooling below the stable layers is demonstrated in February and March. The authors propose a mixed boundary layer process in explaining the Q1 cooling. In April, the analyses demonstrate Q1 heating above the stable layers, coincident with a peak in the apparent moisture sink. The results indicate that the thermal processes of stable-layer generation change the height of the stable layer along the seasonal advance.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Shujie Chang ◽  
Min Shao ◽  
Chunhua Shi ◽  
Hua Xu

Based on Remote Sensing Systems-retrieved temperature data in the period of January 1979 to February 2016, the response of stratospheric and tropospheric temperature in boreal winter to two previously defined types of El Niño [spring (SP) and summer (SU)] is investigated. The results show that, the response of temperature under SP onset involves a significant positive anomaly, with a symmetric distribution about the equator over the Indian Ocean region in the lower troposphere (850 hPa) and a negative anomaly in the lower stratosphere (50 hPa). Meanwhile, in the area 30°N and 30°S of the equator, most parts of the lower stratosphere feature a positive anomaly. This indicates that SP El Niño events are more conducive than SU events to warming the lower stratosphere. The atmospheric circulation structure over the tropical Indian Ocean is beneficial to the upward transfer of warm air to the upper layer. In contrast, the structure over the tropical Pacific Ocean favors the warming of upper air. On the other hand, the Eliassen–Palm (EP) flux is small and the heat flux is negative during SP-type events. Thus, the EP flux and Brewer–Dobson circulation decrease, making the temperature higher in the upper troposphere-lower stratosphere region at low latitudes.


2020 ◽  
Vol 237 ◽  
pp. 03021
Author(s):  
Yasukuni Shibata ◽  
Nagasawa Chikao ◽  
Makoto Abo

The eye-safe lower-tropospheric temperature profiler with three wavelength differential absorption lidar (DIAL) technique which can perform the continuous temperature profile observation through daytime and nighttime is conducted. The DIAL consists of a Nd:YAG laser pumped an OPG tuned around 1573 nm of an CO2 absorption line with 2 mJ/pulse at 400 Hz repetition rate and a receiving telescope of 25cm diameter. In this paper, we show the result of continuous temperature profile observations over 25 hours from 0.39 to 2.5 km altitude in the lower-troposphere. We can see temporally the generation and disappearance of the temperature inversion layers in the planetary boundary layer.


2018 ◽  
Vol 18 (21) ◽  
pp. 15841-15857 ◽  
Author(s):  
Jörn Lessmeier ◽  
Hans Peter Dette ◽  
Adelheid Godt ◽  
Thomas Koop

Abstract. 2-Methylbutane-1,2,3,4-tetraol (hereafter named tetraol) is an important oxidation product of isoprene and can be considered as a marker compound for isoprene-derived secondary organic aerosols (SOAs). Little is known about this compound's physical phase state, although some field observations indicate that isoprene-derived secondary organic aerosols in the tropics tend to be in a liquid rather than a solid state. To gain more knowledge about the possible phase states of tetraol and of tetraol-containing SOA particles, we synthesized tetraol as racemates as well as enantiomerically enriched materials. Subsequently the obtained highly viscous dry liquids were investigated calorimetrically by differential scanning calorimetry revealing subambient glass transition temperatures Tg. We also show that only the diastereomeric isomers differ in their Tg values, albeit only by a few kelvin. We derive the phase diagram of water–tetraol mixtures over the whole tropospheric temperature and humidity range from determining glass transition temperatures and ice melting temperatures of aqueous tetraol mixtures. We also investigated how water diffuses into a sample of dry tetraol. We show that upon water uptake two homogeneous liquid domains form that are separated by a sharp, locally constrained concentration gradient. Finally, we measured the glass transition temperatures of mixtures of tetraol and an important oxidation product of α-pinene-derived SOA: 3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA). Overall, our results imply a liquid-like state of isoprene-derived SOA particles in the lower troposphere at moderate to high relative humidity (RH), but presumably a semisolid or even glassy state at upper tropospheric conditions, particularly at low relative humidity, thus providing experimental support for recent modeling calculations.


2009 ◽  
Vol 26 (8) ◽  
pp. 1493-1509 ◽  
Author(s):  
Carl A. Mears ◽  
Frank J. Wentz

Abstract Measurements made by microwave sounding instruments provide a multidecadal record of atmospheric temperature in several thick atmospheric layers. Satellite measurements began in late 1978 with the launch of the first Microwave Sounding Unit (MSU) and have continued to the present via the use of measurements from the follow-on series of instruments, the Advanced Microwave Sounding Unit (AMSU). The weighting function for MSU channel 2 is centered in the middle troposphere but contains significant weight in the lower stratosphere. To obtain an estimate of tropospheric temperature change that is free from stratospheric effects, a weighted average of MSU channel 2 measurements made at different local zenith angles is used to extrapolate the measurements toward the surface, which results in a measurement of changes in the lower troposphere. In this paper, a description is provided of methods that were used to extend the MSU method to the newer AMSU channel 5 measurements and to intercalibrate the results from the different types of satellites. Then, satellite measurements are compared to results from homogenized radiosonde datasets. The results are found to be in excellent agreement with the radiosonde results in the northern extratropics, where the majority of the radiosonde stations are located.


MAUSAM ◽  
2022 ◽  
Vol 53 (4) ◽  
pp. 503-514
Author(s):  
R. SURESH

The total ozone derived from TOVS data from NOAA 12 satellite through one step physical retrieval algorithm of  International TOVS Processing Package (ITPP) version 5.0 has been used to identify  its diurnal, monthly, latitudinal and longitudinal variability during 1998 over the domain Equator to 26° N / 60-100° E. The linkage of  maximum total ozone with warmer tropopause and lower stratosphere has been re-established. The colder upper tropospheric temperature which is normally associated with maximum ozone concentration throughout the year elsewhere in the world  has also been identified in this study but the relationship gets reversed during southwest  monsoon months(June-September) over the domain considered. The moisture  available in abundance in the lower troposphere gets precipitated due to the convective instability prevailing in the atmosphere during monsoon season and very little moisture is only available for vertical transport into the upper troposphere atop 500 hPa. The latent heat released by the  precipitation processes warms up the middle and upper atmosphere. The warm and dry upper troposphere could be the reason for less depletion of ozone in the upper troposphere during monsoonal  months and this is supported by the positive correlation coefficient prevailing in monsoon season between  total ozone and upper tropospheric (aloft 300 hPa) temperature. The warmness in middle and upper troposphere which is associated with less depletion and/or production of more  ozone in the upper troposphere may  perhaps contribute  for the  higher total ozone during monsoon months than in other seasons over peninsular Indian region.  The minimum concentration is observed during January (226 DU) over 6° N and the maximum (283DU) over 18° N during August. Longitudinal variability is less pronounced than the latitudinal variability.


2004 ◽  
Vol 4 (3) ◽  
pp. 3285-3332 ◽  
Author(s):  
B. Sauvage ◽  
V. Thouret ◽  
J.-P. Cammas ◽  
F. Gheusi ◽  
G. Athier ◽  
...  

Abstract. We analyze MOZAIC ozone observations recorded over Equatorial Africa, from April 1997 to March 2003 to give the first ozone climatology of this region. The monthly mean vertical profiles have been systematically analyzed with monthly mean ECMWF data using a Lagrangian-model (LAGRANTO). We assess the roles played by the dynamical features of Equatorial Africa and the intense biomass burning sources within the region in defining the ozone distribution. The lower troposphere exhibits layers of enhanced ozone during the biomass burning season in each hemisphere (boreal winter in the northern tropics and boreal summer in the southern tropics). The monthly mean vertical profiles of ozone are clearly influenced by the local dynamical situation. Over the Gulf of Guinea during boreal winter, the ozone profile is characterized by systematically high ozone below 650 hPa. This is due to the high stability caused by the Harmattan winds in the lower troposphere and the blocking Saharan anticyclone in the middle troposphere that prevents any efficient vertical mixing. In contrast, Central African enhancements are not only found in the lower troposphere but throughout the troposphere. The boreal summer ozone maximum in the lower troposphere of Central Africa continues up to November in the middle troposphere due to the influx of air masses laden with biomass burning products from Brazil and Southern Africa. Despite its southern latitude, Central Africa during the boreal winter is also under the influence of the northern tropical fires. This phenomenon is known as the "ozone paradox". However, the tropospheric ozone columns calculated from the MOZAIC data give evidence that the Tropical Tropospheric Ozone Column (TTOC) maximum over Africa swings from West Africa in DJF to Central Africa in JJA. This contrasts with studies based on TOMS satellite data. A rough assessment of the regional ozone budget shows that the northern tropics fires in boreal winter might contribute up to 20% of the global photochemical ozone production. This study gives the first detailed picture of the ozone distribution over Equatorial Africa that should be used to validate both global models over this region and future satellite products.


2010 ◽  
Vol 10 (8) ◽  
pp. 19175-19194 ◽  
Author(s):  
Y. Tomikawa ◽  
T. Yamanouchi

Abstract. An analysis of the static stability and ozone vertical gradient in the ozone tropopause based (OTB) coordinate is applied to the ozonesonde data at 10 stations in the Southern Hemisphere (SH) extratropics. The tropopause inversion layer (TIL) with a static stability maximum just above the tropopause shows similar seasonal variations at two Antarctic stations, which are latitudinally far from each other. Since the sunshine hour varies with time in a quite different way between these two stations, it implies that the radiative heating due to solar ultraviolet absorption of ozone does not contribute to the seasonal variation of the TIL. A meridional section of the static stability in the OTB coordinate shows that the static stability just above the tropopause has a large latitudinal gradient between 60° S and 70° S in austral winter because of the absence of the TIL over the Antarctic. It is accompanied by an increase of westerly shear with height above the tropopause, so that the polar-night jet is formed above this latitude region. This result suggests a close relationship between the absence of the TIL and the stratospheric polar vortex in the Antarctic winter. A vertical gradient of ozone mixing ratio, referred to as ozone vertical gradient, around the tropopause shows similar latitudinal and seasonal variations with the static stability in the SH extratropics. In a height region above the TIL, a small ozone vertical gradient in the midlatitudes associated with the Antarctic ozone hole is observed in a height region of the subvortex but not around the polar vortex. This is a clear evidence of active latitudinal mixing between the midlatitudes and subvortex.


2004 ◽  
Vol 43 (11) ◽  
pp. 1635-1647 ◽  
Author(s):  
C. David Whiteman ◽  
Stefan Eisenbach ◽  
Bernhard Pospichal ◽  
Reinhold Steinacker

Abstract Tethered balloon soundings from two sites on the floor of a 1-km-diameter limestone sinkhole in the eastern Alps are compared with pseudovertical temperature “soundings” from three lines of temperature dataloggers on the basin's northwest, southwest, and southeast sidewalls. Under stable nighttime conditions with low background winds, the pseudovertical profiles from all three lines were good proxies for free air temperature soundings over the basin center, with a mean nighttime cold temperature bias of about 0.4°C and a standard deviation of 0.4°C. Cold biases were highest in the upper basin where relatively warm air subsides to replace air that spills out of the basin through the lowest-altitude saddle. On a windy night, standard deviations increased to 1°–2°C. After sunrise, the varying exposures of the dataloggers to sunlight made the pseudovertical profiles less useful as proxies for free air soundings. The good correspondence between sidewall and free air temperatures during high-static-stability conditions suggests that sidewall soundings can be used to monitor temperatures, temperature gradients, and temperature inversion evolution in the sinkhole. Sidewall soundings can produce more frequent profiles at lower cost than can tethersondes or rawinsondes, and extension of these findings to other enclosed or semienclosed topographies may enhance future basic meteorological research or support applications studies in agriculture, forestry, air pollution, and land use planning.


Sign in / Sign up

Export Citation Format

Share Document