scholarly journals On the Link between Summer Dry Bias over the U.S. Great Plains and Seasonal Temperature Prediction Skill in a Dynamical Forecast System

2019 ◽  
Vol 34 (4) ◽  
pp. 1161-1172 ◽  
Author(s):  
Constantin Ardilouze ◽  
Lauriane Batté ◽  
Bertrand Decharme ◽  
Michel Déqué

Abstract Soil moisture anomalies are expected to be a driver of summer predictability for the U.S. Great Plains since this region is prone to intense and year-to-year varying water and energy exchange between the land and the atmosphere. However, dynamical seasonal forecast systems struggle to deliver skillful summer temperature forecasts over that region, otherwise subject to a consistent warm-season dry bias in many climate models. This study proposes two techniques to mitigate the impact of this precipitation deficit on the modeled soil water content in a forecast system based on the CNRM-CM6-1 model. Both techniques lead to increased evapotranspiration during summer and reduced temperature and precipitation bias. However, only the technique based on a correction of the precipitation feeding the land surface throughout the forecast integration enables skillful summer prediction. Although this result cannot be generalized for other parts of the globe, it confirms the link between bias and skill over the U.S. Great Plains and pleads for continued efforts of the modeling community to tackle the summer bias affecting that region.

2021 ◽  
Vol 22 (1) ◽  
pp. 63-76
Author(s):  
Yizhou Zhuang ◽  
Amir Erfanian ◽  
Rong Fu

AbstractAlthough the influence of sea surface temperature (SST) forcing and large-scale teleconnection on summer droughts over the U.S. Great Plains has been suggested for decades, the underlying mechanisms are still not fully understood. Here we show a significant correlation between low-level moisture condition over the U.S. Southwest in spring and rainfall variability over the Great Plains in summer. Such a connection is due to the strong influence of the Southwest dryness on the zonal moisture advection to the Great Plains from spring to summer. This advection is an important contributor for the moisture deficit during spring to early summer, and so can initiate warm season drought over the Great Plains. In other words, the well-documented influence of cold season Pacific SST on the Southwest rainfall in spring, and the influence of the latter on the zonal moisture advection to the Great Plains from spring to summer, allows the Pacific climate variability in winter and spring to explain over 35% of the variance of the summer precipitation over the Great Plains, more than that can be explained by the previous documented west Pacific–North America (WPNA) teleconnection forced by tropical Pacific SST in early summer. Thus, this remote land surface feedback due to the Southwest dryness can potentially improve the predictability of summer precipitation and drought onsets over the Great Plains.


2015 ◽  
Vol 8 (6) ◽  
pp. 4781-4821 ◽  
Author(s):  
S. O. Los

Abstract. A model was developed to simulate spatial, seasonal and interannual variations in vegetation in response to temperature, precipitation and atmospheric CO2 concentrations; the model addresses shortcomings in current implementations. The model uses the minimum of 12 temperature and precipitation constraint functions to simulate NDVI. Functions vary based on the Köppen–Trewartha climate classification to take adaptations of vegetation to climate into account. The simulated NDVI, referred to as the climate constrained vegetation index (CCVI), captured the spatial variability (0.82 < r <0.87), seasonal variability (median r = 0.83) and interannual variability (median global r = 0.24) in NDVI. The CCVI simulated the effects of adverse climate on vegetation during the 1984 drought in the Sahel and during dust bowls of the 1930s and 1950s in the Great Plains in North America. A global CO2 fertilisation effect was found in NDVI data, similar in magnitude to that of earlier estimates (8 % for the 20th century). This effect increased linearly with simple ratio, a transformation of the NDVI. Three CCVI scenarios, based on climate simulations using the representative concentration pathway RCP4.5, showed a greater sensitivity of vegetation towards precipitation in Northern Hemisphere mid latitudes than is currently implemented in climate models. This higher sensitivity is of importance to assess the impact of climate variability on vegetation, in particular on agricultural productivity.


2008 ◽  
Vol 21 (16) ◽  
pp. 4132-4146 ◽  
Author(s):  
R. E. Carbone ◽  
J. D. Tuttle

Abstract The diurnal occurrence of warm-season rainfall over the U.S. mainland is examined, particularly in light of forcings at multiple scales. The analysis is based on a radar dataset of 12-seasons duration covering the U.S. mainland from the Continental Divide eastward. The dataset resolves 2-km features at 15-min intervals, thus providing a detailed view of both large- and regional-scale diurnal patterns, as well as the statistics of events underlying these patterns. The results confirm recent findings with respect to the role of propagating rainfall systems and the high frequency at which these are excited by sensible heating over elevated terrain. Between the Rockies and the Appalachians, ∼60% of midsummer rainfall occurs in this manner. Most rainfall in the central United States is nocturnal and may be attributed to the following three main forcings: 1) the passage of eastward-propagating rainfall systems with origins near the Continental Divide at 105°W; 2) a nocturnal reversal of the mountain–plains solenoid, which is associated with widespread ascent over the plains; and 3) the transport of energetic air and moisture convergence by the Great Plains low-level jet. Other features of interest include effects of the Appalachians, semidiurnal signals of regional significance, and the impact of breezes along the Gulf of Mexico. A modest effort was put forth to discern signals associated with El Niño and the Southern Oscillation. While tendencies in precipitation patterns are observed, the record is too short to draw conclusions of general significance.


2015 ◽  
Vol 28 (3) ◽  
pp. 1308-1328 ◽  
Author(s):  
Alexis Berg ◽  
Benjamin R. Lintner ◽  
Kirsten Findell ◽  
Sonia I. Seneviratne ◽  
Bart van den Hurk ◽  
...  

Abstract Widespread negative correlations between summertime-mean temperatures and precipitation over land regions are a well-known feature of terrestrial climate. This behavior has generally been interpreted in the context of soil moisture–atmosphere coupling, with soil moisture deficits associated with reduced rainfall leading to enhanced surface sensible heating and higher surface temperature. The present study revisits the genesis of these negative temperature–precipitation correlations using simulations from the Global Land–Atmosphere Coupling Experiment–phase 5 of the Coupled Model Intercomparison Project (GLACE-CMIP5) multimodel experiment. The analyses are based on simulations with five climate models, which were integrated with prescribed (noninteractive) and with interactive soil moisture over the period 1950–2100. While the results presented here generally confirm the interpretation that negative correlations between seasonal temperature and precipitation arise through the direct control of soil moisture on surface heat flux partitioning, the presence of widespread negative correlations when soil moisture–atmosphere interactions are artificially removed in at least two out of five models suggests that atmospheric processes, in addition to land surface processes, contribute to the observed negative temperature–precipitation correlation. On longer time scales, the negative correlation between precipitation and temperature is shown to have implications for the projection of climate change impacts on near-surface climate: in all models, in the regions of strongest temperature–precipitation anticorrelation on interannual time scales, long-term regional warming is modulated to a large extent by the regional response of precipitation to climate change, with precipitation increases (decreases) being associated with minimum (maximum) warming. This correspondence appears to arise largely as the result of soil moisture–atmosphere interactions.


2017 ◽  
Vol 30 (20) ◽  
pp. 8275-8298 ◽  
Author(s):  
Melissa S. Bukovsky ◽  
Rachel R. McCrary ◽  
Anji Seth ◽  
Linda O. Mearns

Abstract Global and regional climate model ensembles project that the annual cycle of rainfall over the southern Great Plains (SGP) will amplify by midcentury. Models indicate that warm-season precipitation will increase during the early spring wet season but shift north earlier in the season, intensifying late summer drying. Regional climate models (RCMs) project larger precipitation changes than their global climate model (GCM) counterparts. This is particularly true during the dry season. The credibility of the RCM projections is established by exploring the larger-scale dynamical and local land–atmosphere feedback processes that drive future changes in the simulations, that is, the responsible mechanisms or processes. In this case, it is found that out of 12 RCM simulations produced for the North American Regional Climate Change Assessment Program (NARCCAP), the majority are mechanistically credible and consistent in the mean changes they are producing in the SGP. Both larger-scale dynamical processes and local land–atmosphere feedbacks drive an earlier end to the spring wet period and deepening of the summer dry season in the SGP. The midlatitude upper-level jet shifts northward, the monsoon anticyclone expands, and the Great Plains low-level jet increases in strength, all supporting a poleward shift in precipitation in the future. This dynamically forced shift causes land–atmosphere coupling to strengthen earlier in the summer, which in turn leads to earlier evaporation of soil moisture in the summer, resulting in extreme drying later in the summer.


2015 ◽  
Vol 165 ◽  
pp. 42-52 ◽  
Author(s):  
J.J. Walker ◽  
K.M. de Beurs ◽  
G.M. Henebry

2013 ◽  
Vol 17 (1) ◽  
pp. 1-20 ◽  
Author(s):  
B. Shrestha ◽  
M. S. Babel ◽  
S. Maskey ◽  
A. van Griensven ◽  
S. Uhlenbrook ◽  
...  

Abstract. This paper evaluates the impact of climate change on sediment yield in the Nam Ou basin located in northern Laos. Future climate (temperature and precipitation) from four general circulation models (GCMs) that are found to perform well in the Mekong region and a regional circulation model (PRECIS) are downscaled using a delta change approach. The Soil and Water Assessment Tool (SWAT) is used to assess future changes in sediment flux attributable to climate change. Results indicate up to 3.0 °C shift in seasonal temperature and 27% (decrease) to 41% (increase) in seasonal precipitation. The largest increase in temperature is observed in the dry season while the largest change in precipitation is observed in the wet season. In general, temperature shows increasing trends but changes in precipitation are not unidirectional and vary depending on the greenhouse gas emission scenarios (GHGES), climate models, prediction period and season. The simulation results show that the changes in annual stream discharges are likely to range from a 17% decrease to 66% increase in the future, which will lead to predicted changes in annual sediment yield ranging from a 27% decrease to about 160% increase. Changes in intra-annual (monthly) discharge as well as sediment yield are even greater (−62 to 105% in discharge and −88 to 243% in sediment yield). A higher discharge and sediment flux are expected during the wet seasons, although the highest relative changes are observed during the dry months. The results indicate high uncertainties in the direction and magnitude of changes of discharge as well as sediment yields due to climate change. As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in both sediment management and climate change adaptation.


2021 ◽  
Vol 12 (3) ◽  
pp. 919-938
Author(s):  
Mengyuan Mu ◽  
Martin G. De Kauwe ◽  
Anna M. Ukkola ◽  
Andy J. Pitman ◽  
Weidong Guo ◽  
...  

Abstract. The co-occurrence of droughts and heatwaves can have significant impacts on many socioeconomic and environmental systems. Groundwater has the potential to moderate the impact of droughts and heatwaves by moistening the soil and enabling vegetation to maintain higher evaporation, thereby cooling the canopy. We use the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model, coupled to a groundwater scheme, to examine how groundwater influences ecosystems under conditions of co-occurring droughts and heatwaves. We focus specifically on south-east Australia for the period 2000–2019, when two significant droughts and multiple extreme heatwave events occurred. We found groundwater plays an important role in helping vegetation maintain transpiration, particularly in the first 1–2 years of a multi-year drought. Groundwater impedes gravity-driven drainage and moistens the root zone via capillary rise. These mechanisms reduced forest canopy temperatures by up to 5 ∘C during individual heatwaves, particularly where the water table depth is shallow. The role of groundwater diminishes as the drought lengthens beyond 2 years and soil water reserves are depleted. Further, the lack of deep roots or stomatal closure caused by high vapour pressure deficit or high temperatures can reduce the additional transpiration induced by groundwater. The capacity of groundwater to moderate both water and heat stress on ecosystems during simultaneous droughts and heatwaves is not represented in most global climate models, suggesting that model projections may overestimate the risk of these events in the future.


2021 ◽  
Author(s):  
Thedini Asali Peiris ◽  
Petra Döll

&lt;p&gt;Unlike global climate models, hydrological models cannot simulate the feedbacks among atmospheric processes, vegetation, water, and energy exchange at the land surface. This severely limits their ability to quantify the impact of climate change and the concurrent increase of atmospheric CO&lt;sub&gt;2&lt;/sub&gt; concentrations on evapotranspiration and thus runoff. Hydrological models generally calculate actual evapotranspiration as a fraction of potential evapotranspiration (PET), which is computed as a function of temperature and net radiation and sometimes of humidity and wind speed. Almost no hydrological model takes into account that PET changes because the vegetation responds to changing CO&lt;sub&gt;2&lt;/sub&gt; and climate. This active vegetation response consists of three components. With higher CO&lt;sub&gt;2&lt;/sub&gt; concentrations, 1) plant stomata close, reducing transpiration (physiological effect) and 2) plants may grow better, with more leaves, increasing transpiration (structural effect), while 3) climatic changes lead to changes in plants growth and even biome shifts, changing evapotranspiration. Global climate models, which include dynamic vegetation models, simulate all these processes, albeit with a high uncertainty, and take into account the feedbacks to the atmosphere.&lt;/p&gt;&lt;p&gt;Milly and Dunne (2016) (MD) found that in the case of RCP8.5 the change of PET (computed using the Penman-Monteith equation) between 1981- 2000 and 2081-2100 is much higher than the change of non-water-stressed evapotranspiration (NWSET) computed by an ensemble of global climate models. This overestimation is partially due to the neglect of active vegetation response and partially due to the neglected feedbacks between the atmosphere and the land surface.&lt;/p&gt;&lt;p&gt;The objective of this paper is to present a simple approach for hydrological models that enables them to mimic the effect of active vegetation on potential evapotranspiration under climate change, thus improving computation of freshwater-related climate change hazards by hydrological models. MD proposed an alternative approach to estimate changes in PET for impact studies that is only a function of the changes in energy and not of temperature and achieves a good fit to the ensemble mean change of evapotranspiration computed by the ensemble of global climate models in months and grid cells without water stress. We developed an implementation of the MD idea for hydrological models using the Priestley-Taylor equation (PET-PT) to estimate PET as a function of net radiation and temperature. With PET-PT, an increasing temperature trend leads to strong increases in PET. Our proposed methodology (PET-MD) helps to remove this effect, retaining the impact of temperature on PET but not on long-term PET change.&lt;/p&gt;&lt;p&gt;We implemented the PET-MD approach in the global hydrological model WaterGAP2.2d. and computed daily time series of PET between 1981 and 2099 using bias-adjusted climate data of four global climate models for RCP 8.5. We evaluated, computed PET-PT and PET-MD at the grid cell level and globally, comparing also to the results of the Milly-Dunne study. The global analysis suggests that the application of PET-MD reduces the PET change until the end of this century from 3.341 mm/day according to PET-PT to 3.087 mm/day (ensemble mean over the four global climate models).&lt;/p&gt;&lt;p&gt;Milly, P.C.D., Dunne K.A. (2016). DOI:10.1038/nclimate3046.&lt;/p&gt;


2018 ◽  
Author(s):  
Sophie Bastin ◽  
Philippe Drobinski ◽  
Marjolaine Chiriaco ◽  
Olivier Bock ◽  
Romain Roehrig ◽  
...  

Abstract. This work uses a network of GPS stations over Europe from which a homogenised integrated water vapor (IWV) dataset has been retrieved, completed with colocated temperature and precipitation measurements over specific stations to i) estimate the biases of six regional climate models over Europe in terms of humidity; ii) understand their origins; iii) and finally assess the impact of these biases on the frequency of occurrence of precipitation. The evaluated simulations have been performed in the framework of HYMEX/Med-CORDEX programs and cover the Mediterranean area and part of Europe at horizontal resolutions of 50 to 12 km. The analysis shows that models tend to overestimate the low values of IWV and the use of the nudging technique reduces the differences between GPS and simulated IWV. Results suggest that physics of models mostly explain the mean biases, while dynamics affects the variability. The land surface/atmosphere exchanges affect the estimation of IWV over most part of Europe, especially in summer. The limitations of the models to represent these processes explain part of their baises in IWV. However, models correctly simulate the dependance between IWV and temperature, and specifically the deviation that this relationship experiences regarding the Clausius-Clapeyron law after a critical value of temperature (Tbreak). The high spatial variability of Tbreak indicates that it has a strong dependence on local processes which drive the local humidity sources. This explains why the maximum values of IWV are not necessarely observed over warmer area, that are often dry area. Finally, it is shown over SIRTA observatory (near Paris) that the frequency of occurrence of light precipitation is strongly conditioned by the biases in IWV and by the precision of the models to reproduce the distribution of IWV as a function of the temperature. The results of the models indicate that a similar dependence occurs in other areas of Europe, especially where precipitation has a predominantly convective character. According to the observations, for each range of temperature, there is a critical value of IWV from which precipitation picks up. The critical values and the probability to exceed them are simulated with a bias that depends on the model. Those models which present too often light precipitation generally show lower critical values and higher probability to exceed them.


Sign in / Sign up

Export Citation Format

Share Document