Understanding the Climate-Sensitive Decisions and Information Needs of Freshwater Resource Managers in Hawaii

2013 ◽  
Vol 5 (4) ◽  
pp. 293-308 ◽  
Author(s):  
Melissa L. Finucane ◽  
Rachel Miller ◽  
L. Kati Corlew ◽  
Victoria W. Keener ◽  
Maxine Burkett ◽  
...  

Abstract Understanding how climate science can be useful in decisions about the management of freshwater resources requires knowledge of decision makers, their climate-sensitive decisions, and the context in which the decisions are being made. A mixed-methods study found that people managing freshwater resources in Hawaii are highly educated and experienced in diverse professions, they perceive climate change as posing a worrisome risk, and they would like to be better informed about how to adapt to climate change. Decision makers with higher climate literacy seem to be more comfortable dealing with uncertain information. Those with lower climate literacy seem to be more trusting of climate information from familiar sources. Freshwater managers in Hawaii make a wide range of climate-sensitive decisions. These decisions can be characterized on several key dimensions including purpose (optimization and evaluation), time horizon (short term and long term), level of information uncertainty (known, uncertain, deeply uncertain, and completely unknown), and information type (quantitative and qualitative). The climate information most relevant to decision makers includes vulnerability assessments incorporating long-term projections about temperature, rainfall distribution, storms, sea level rise, and streamflow changes at an island or statewide scale. The main barriers to using available climate information include insufficient staff time to locate the information and the lack of a clear legal mandate to use the information. Overall, the results suggest that an integrated and systematic approach is needed to determine where and when uncertain climate information is useful and how a larger set of organizational and individual variables affect decision making.

2021 ◽  
Vol 167 (3-4) ◽  
Author(s):  
David J. Lawrence ◽  
Amber N. Runyon ◽  
John E. Gross ◽  
Gregor W. Schuurman ◽  
Brian W. Miller

AbstractScenario planning has emerged as a widely used planning process for resource management in situations of consequential, irreducible uncertainty. Because it explicitly incorporates uncertainty, scenario planning is regularly employed in climate change adaptation. An early and essential step in developing scenarios is identifying “climate futures”—descriptions of the physical attributes of plausible future climates that could occur at a specific place and time. Divergent climate futures that describe the broadest possible range of plausible conditions support information needs of decision makers, including understanding the spectrum of potential resource responses to climate change, developing strategies robust to that range, avoiding highly consequential surprises, and averting maladaptation. Here, we discuss three approaches for generating climate futures: a Representative Concentration Pathway (RCP)-ensemble, a quadrant-average, and an individual-projection approach. All are designed to capture relevant uncertainty, but they differ in utility for different applications, complexity, and effort required to implement. Using an application from Big Bend National Park as an example of numerous similar efforts to develop climate futures for National Park Service applications over the past decade, we compare these approaches, focusing on their ability to capture among-projection divergence during early-, mid-, and late-twenty-first century periods to align with near-, mid-, and long-term planning efforts. The quadrant-average approach and especially the individual-projection approach captured a broader range of plausible future conditions than the RCP-ensemble approach, particularly in the near term. Therefore, the individual-projection approach supports decision makers seeking to understand the broadest potential characterization of future conditions. We discuss tradeoffs associated with different climate future approaches and highlight suitable applications.


2021 ◽  
Author(s):  
Jana Sillmann ◽  
Melanie Burford ◽  
Miriam Stackpole Dahl

<p>Extreme floods with severe impacts have hit municipalities in Western Norway in recent decades and they will become more intense and frequent with global warming. We present a project that focused on providing an approach for visualizing climate change information for decision-makers challenged with planning resilient infrastructure and preparedness measures for future flood impacts. We have chosen visual storytelling through a short film as the most suitable and effective tool for building a communication strategy to reach out to local and regional decision-makers on the one hand and the research community on the other.</p><p>The objective was to present and communicate results from a research project in a film by focusing on low-probability high-impact events using a storyline approach. The scope of the research project was to provide Norwegian stakeholders with a realistic representation of how an observed high-impact event of the past will look like under projected future climate conditions (Schaller et al. 2020, Hegdahl et al. 2020). Recent high-impact flood events in Norway have emphasized the need for more proactive climate change adaptation. This requires local, actionable and reliable climate information to support the decision making as well as awareness and consideration of barriers to adaptation. Thus, a seamless chain from global climate system modelling over high-resolution hydrological modelling to impact assessments is needed. We have therefore taken a novel "Tales of future weather" approach (Hazeleger et al. 2015), which suggests that scenarios tailored to a specific region and stakeholder context in combination with numerical weather prediction models will offer a more realistic picture of what future weather might look like, hence facilitating adaptation planning and implementation.</p><p>The film we produced particularly focuses on the extreme flood event in October 2005 that affected people (including fatalities) in Bergen municipality, how the event can be seen in context of historic floods and its atmospheric drivers. It tells the story of people having experienced this event and how Bergen municipality was responding to that event.  One key objective of the film is to drive interest and attention to the event-based storyline approach (Sillmann et al. 2020) to facilitate uptake of climate information and to empower decision makers with new knowledge and tools to assist them in their decision making.</p><p> </p><p><strong>References</strong></p><p>Hazeleger, W., B. Van den Hurk, E. Min, G-J. Van Oldenborgh, A. Petersen, D. Stainforth, D., E. Vasileiadou, and L. Smith, 2015: Tales of future weather. Nature Climate Change, 5, 107-113, doi: 10.1038/nclimate2450.</p><p>Hegdahl, T.J., K. Engeland, M. Müller and J. Sillmann, 2020: Atmospheric River induced floods in western Norway – under present and future climate, J. Hydrometeorology, doi: 10.1175/JHM-D-19-0071.1.</p><p>Schaller, N., J. Sillmann, M. Mueller, R. Haarsma, W. Hazeleger, T. Jahr Hegdahl, T. Kelder, G. van den Oord, A. Weerts, and K. Whan, 2020: The role of spatial and temporal model resolution in a flood event storyline approach in Western Norway, Weather and Climate Extremes, 29, doi: 10.1016/j.wace.2020.100259.</p><p>Sillmann, J., T. G. Shepherd, B. van den Hurk, W. Hazeleger, O. Martius, J. Zscheischler, 2020: Event-based storylines to address climate risk, Earth’s Future, doi: 10.1029/2020EF001783.</p>


2016 ◽  
Vol 9 (9) ◽  
pp. 3461-3482 ◽  
Author(s):  
Brian C. O'Neill ◽  
Claudia Tebaldi ◽  
Detlef P. van Vuuren ◽  
Veronika Eyring ◽  
Pierre Friedlingstein ◽  
...  

Abstract. Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017–2018 time frame, and output from the climate model projections made available and analyses performed over the 2018–2020 period.


2020 ◽  
Vol 12 (22) ◽  
pp. 9735
Author(s):  
Mingshun Zhang ◽  
Yaguang Yang ◽  
Huanhuan Li ◽  
Meine Pieter van Dijk

Building an urban resilience index results in developing an increasingly popular tool for monitoring progress towards climate-proof cities. This paper develops an urban resilience index in the context of urban China, which helps planners and policy-makers at city level to identify whether urban development is leading to more resilience. The urban resilience index (URI) suggested in this research uses data on 24 indicators distributed over six URI component indices. While no measure of such a complex phenomenon can be perfect, the URI proved to be effective, useful and robust. Our findings show that the URI ensures access to integrated information on urban resilience to climate change. It allows comparisons of cities in a systematic and quantitative way, and enables identification of strong and weak points related to urban resilience. The URI provides tangible measures of not only overall measures of urban resilience to climate change, but also urban resilience components and related indicators. Therefore, it could meet a wide range of policy and research needs. URI is a helpful tool for urban decision-makers and urban planners to quantify goals, measure progress, benchmark performance, and identify priorities for achieving high urban resilience to climate change.


OENO One ◽  
2017 ◽  
Vol 51 (2) ◽  
pp. 61 ◽  
Author(s):  
Helder Fraga ◽  
Iñaki García de Cortázar Atauri ◽  
Aureliano C. Malheiro ◽  
José Moutinho-Pereira ◽  
João A. Santos

<p class="Abstract" style="text-align: justify;"><strong>Aim:</strong> The winemaking sector in Portugal is of major socio-economic relevance, significantly contributing to the national exports and sustaining many wine-related activities, including oenotourism. Portuguese viticultural regions present a wide range of edaphoclimatic conditions with remarkable regional specificities, thus contributing to the individuality of their wines. Owing to the strong influence of climate and weather factors on grapevines, climate change may drive significant impacts on Portuguese viticulture.</p><p class="Abstract" style="text-align: justify;"><strong>Methods and results:</strong> Climatic projections for the next decades in Portugal highlight an overall warming and drying trend of the grapevine growing season, potentially resulting in modifications in phenology, growth, development, yields and eventually wine characteristics and typicity. Furthermore, the current viticultural suitability of each region is projected to undergo significant changes, suggesting a reshaping of the optimal conditions for viticulture throughout the country. In order to sustain high quality levels and affordable yield regularity, cost-effective, appropriate and timely adaptation measures must be implemented by the sector.</p><p class="Abstract" style="text-align: justify;"><strong>Conclusion:</strong> The most recent scientific studies covering the potential impacts of climate change on Portuguese viticulture are herein presented.</p><p class="Abstract" style="text-align: justify;"><strong>Significance and impact of the study:</strong> Possible adaptation measures against these threats are also discussed, foreseeing their integration into decision support systems by stakeholders and decision-makers.</p>


2021 ◽  
Author(s):  
◽  
Judith Helen Lawrence

<p>The ability of decision makers to respond to climate change impacts such as sea-level rise and increased flood frequency is challenged by uncertainty about scale, timing, dynamic changes that could lead to regime shifts, and by societal changes. Climate change adaptation decision making needs to be robust and flexible across a range of possible futures, to provide sufficient certainty for investment decisions in the present, without creating undue risks and liabilities for the near and long-term futures. A country’s governance and regulatory institutions set parameters for such decisions. The decision-making challenge is, therefore, a function of the uncertainty and dynamic characteristics of climate change, a country’s institutional framework, and the ways in which actual decision-making practice delivers on the intention of the framework.  My research asks if the current decision-making framework, at national and sub-national scales, and practices under it are adequate to enable decision makers to make climate change adaptation decisions that sufficiently address the constraints posed by climate change uncertainty and dynamic change. The focus is on New Zealand’s multi-scale governance and institutional framework with its high level of devolution to the local level, the level assumed as the most appropriate for climate change adaptation decisions. Empirical information was collected from a sample of agencies and actors, at multiple governance scales reflecting the range of geographical characteristics, governance types, organisational functions and actor disciplines. Data were collected using a mix of workshops, interviews and document analyses. The adequacy of the institutional framework and practice was examined using 12 criteria derived from the risk-based concepts of precaution, risk management, adaptive management and transformational change, with respect to; a) understanding and representing uncertainty and dynamic climate change; b) governance and regulations; and c) organisations and actors.  The research found that the current decision-making framework has many elements that could, in principle, address uncertainty and dynamic climate change. It enables long-term considerations and emphasises precaution and risk-based decision making. However, adaptive and transformational objectives are largely absent, coordination across multiple levels of government is constrained and timeframes are inconsistent across statutes. Practice shows that climate risk has been entrenched by misrepresentation of climate change characteristics. The resulting ambiguity is compounded at different governance scales, by gaps in the use of national and regional instruments and consequent differences in judicial decisions. Practitioners rely heavily upon static, time-bound treatments of risk, which reinforce unrealistic community expectations of ongoing protections, even as the climate continues to change, and makes it difficult to introduce transformational measures. Some efforts to reflect changing risk were observed but are, at best, transitional measures. Some experimentation was found in local government practice and boundary organisations were used as change-agents. Any potential improvements to both the institutional framework and to practices that could enable flexible and robust adaptation to climate change, would require supporting policies and adaptive governance to leverage them and to sustain decision making through time.  This thesis contributes to understanding how uncertainty and dynamic climate change characteristics matter for adaptation decision making by examining both a country-level institutional framework and practice under it. The adequacy analysis offers a new way of identifying institutional barriers, enablers and entry points for change in the context of decision making under conditions of uncertainty and dynamic climate change.</p>


Climate ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Emmanuel Dubois ◽  
Marie Larocque ◽  
Sylvain Gagné ◽  
Marco Braun

Long-term changes in precipitation and temperature indirectly impact aquifers through groundwater recharge (GWR). Although estimates of future GWR are needed for water resource management, they are uncertain in cold and humid climates due to the wide range in possible future climatic conditions. This work aims to (1) simulate the impacts of climate change on regional GWR for a cold and humid climate and (2) identify precipitation and temperature changes leading to significant long-term changes in GWR. Spatially distributed GWR is simulated in a case study for the southern Province of Quebec (Canada, 36,000 km2) using a water budget model. Climate scenarios from global climate models indicate warming temperatures and wetter conditions (RCP4.5 and RCP8.5; 1951–2100). The results show that annual precipitation increases of >+150 mm/yr or winter precipitation increases of >+25 mm will lead to significantly higher GWR. GWR is expected to decrease if the precipitation changes are lower than these thresholds. Significant GWR changes are produced only when the temperature change exceeds +2 °C. Temperature changes of >+4.5 °C limit the GWR increase to +30 mm/yr. This work provides useful insights into the regional assessment of future GWR in cold and humid climates, thus helping in planning decisions as climate change unfolds. The results are expected to be comparable to those in other regions with similar climates in post-glacial geological environments and future climate change conditions.


1998 ◽  
Vol 79 (1) ◽  
pp. 79-84 ◽  
Author(s):  
David Changnon

Job opportunities for undergraduate meteorology students are decreasing. An innovative course in applied climatology has been designed and tested to help prepare such students for the career options developing in the private sector. Students are trained to use their meteorological knowledge and analytical skills to work interactively with weather-sensitive users in utilities, agribusinesses, water-resource agencies, recreation firms, and transportation companies. The students develop and test climate relationship-decision models in a real-world environment for these organizations. The models they develop bridge existing information “gaps” between climatologists and weather-sensitive managers who 1) do not understand climate information, and/or 2) do not know how to apply it to their environmental or economic decisions. As a result, students receive applied research experience and important “education-to-career” opportunities; that is, students can apply what is learned through direct and often beneficial interactions with decision makers. These efforts address problems similar to those they likely will encounter after employment. Other long-term objectives of this course are to develop a more effective information flow between climatologists and weather-sensitive users and to assist climatologists by identifying the types of needs for climate information.


2021 ◽  
Author(s):  
Blas Lajarín ◽  
Nieves Peña ◽  
Jorge Paz ◽  
Edward P. Morris ◽  
Greta C. Vega ◽  
...  

&lt;p&gt;The Thermal Assessment Tool has been developed within the framework of a&amp;#160;Copernicus Climate Change Service (C3S)&amp;#160;contract, titled Climate Change Dashboards for Decision Makers, to provide an interactive and informative dashboard to allow users to visualize the frequency and severity of risk events related to cold snaps and heatwaves. The tool is based on historical, seasonal forecast and long-term projections datasets, available through C3S Climate Data Store (CDS). It reduces the need for repetitive complex climate data analysis, thereby saving time and effort in the decision-making process.&lt;/p&gt;&lt;p&gt;Climate change has already impacted ecosystems and humans, and it is foreseeing that will lead to an increase in the number and intensity of extreme weather events, including heatwaves and cold snaps. These may bring temperatures that are significantly warmer or colder than average that may cause impacts such as thermal discomfort, lack of productivity, more energy consumption and/or health problems. To reduce or at least mitigate these impacts added-value information regarding the risks of extreme temperatures is needed to make proper decisions to prepare, protect and prevent the city and citizens.&lt;/p&gt;&lt;p&gt;For this purpose, the Thermal Assessment Tool provides a customized dashboard that allows users to visualize heatwaves, cold snaps and thermal comfort based on long-term projections and seasonal forecasts. The tool also presents an interactive map and a time series visualization identifying the magnitude of these three variables. This reduces the need for repetitive complex climate data analysis, thereby saving time and effort in the decision-making processes. Information on the frequency and severity of future extreme temperature events can also assist with planning.&lt;/p&gt;&lt;p&gt;The tool showcases how to analyze, process and simplify large volumes of data through different maps and plots that make it easier to understand climate indicators (about the past, present or future). Local governments and other decision-makers, as well as actors in housing development and management, urban planning, and insurance can refer to the tool to complement their usual information systems with additional quality-assured insights that they can act on.&lt;/p&gt;&lt;p&gt;Acknowledgments: We would like to thank the C3S for funding this project and the participants in the various workshops mentioned below: Ayuntamiento de Bilbao, Ihobe y la Oficina Espa&amp;#241;ola de Cambio Clim&amp;#225;tico.&lt;/p&gt;


2021 ◽  
pp. 1-10
Author(s):  
LeSheng Jin ◽  
Ronald R. Yager ◽  
Jana Špirková ◽  
Radko Mesiar ◽  
Daniel Paternain ◽  
...  

Basic Uncertain Information (BUI) as a newly introduced concept generalized a wide range of uncertain information. The well-known Ordered Weighted Averaging (OWA) operators can flexibly and effectively model bipolar preferences of decision makers over given real valued input vector. However, there are no extant methods for OWA operators to be carried out over given BUI vectors. Against this background, this study firstly discusses the interval transformation for BUI and elaborately explains the reasonability within it. Then, we propose the corresponding preference aggregations for BUI in two different decisional scenarios, the aggregation for BUI vector without original information influencing and the aggregation for BUI vector with original information influencing after interval transformation. For each decisional scenario, we also discuss two different orderings of preference aggregation, namely, interval-vector and vector-interval orderings, respectively. Hence, we will propose four different aggregation procedures of preference aggregation for BUI vector. Some illustrative examples are provided immediately after the corresponding aggregation procedures.


Sign in / Sign up

Export Citation Format

Share Document