The effect of nano-additive reinforcements on thermoplastic microballoon epoxy syntactic foam mechanical properties

2017 ◽  
Vol 52 (7) ◽  
pp. 971-980 ◽  
Author(s):  
Kerrick R Dando ◽  
David R Salem

Syntactic foams comprising glass microballoons have gained considerable attention over the past several years due to mechanical and thermal properties that are advantageous for use as a core material in naval and aerospace applications. Recent advancements in the production of thermoplastic microballoon syntactic foams have allowed for an increase in microballoon volume fraction (up to 0.9 volume fraction), with correspondingly lower densities but reduced mechanical properties. In this work, carbon nanofibers and halloysite nanotubes were incorporated in thermoplastic microballoon-based syntactic foam to enhance the mechanical properties and the relative effects of these two nanoscale reinforcements were compared. X-ray micro-computed tomography was employed to analyze the microstructure of the materials produced, and scanning electron microscopy was used to assess the dispersion of nano-additives within the resin. Compressive strength and modulus enhancements as large as 180% and 250% respectively were achieved with a 0.25 wt% addition of carbon nanofiber and increases of 165% and 244% respectively were achieved with a 0.5 wt% addition of halloysite nanotube. Tensile strength and modulus enhancements as large as 110% and 165% respectively were achieved with a 0.125 wt% addition of carbon nanofiber and increases of 133% and 173% respectively were achieved with a 0.125 wt% addition of halloysite nanotube.

2021 ◽  
pp. 0021955X2098715
Author(s):  
AV Ullas ◽  
D Kumar ◽  
PK Roy

In this paper, we report the effect of introducing molybdenum disulfide (MoS2) nano-platelets: a two-dimensional metal chalcogenide, on the mechanical properties of hollow glass microballoon (HGM)–epoxy syntactic foams. MoS2 reinforced syntactic foams were prepared by mixing MoS2 nanoplatelets to epoxy containing HGMs; with the amount of MoS2 being varied from 0.01 to 0.04% v/v, while maintaining a constant total filler volume fraction of 40% for all compositions. The mechanical behaviour of reinforced syntactic foam was studied under varied loadings including compressive, tensile and flexural under different strain rate regimes. Introduction of MoS2 led to significant improvements in characteristic mechanical properties, particularly in terms of compressive strength and toughness, which suggest intercalation of MoS2 within the epoxy matrix; however, the presence of relatively larger MoS2 micro particles couldn’t be completely negated. The toughness of the foam, as indicated by the area under the compressive stress-strain curve, was found to increase by ∼21% under optimal conditions. Our results highlight the potential of the two-dimensional MoS2 sheets as a reinforcing agent in syntactic foams.


2018 ◽  
Vol 53 (13) ◽  
pp. 1737-1749 ◽  
Author(s):  
Kerrick R Dando ◽  
William M Cross ◽  
Marc J Robinson ◽  
David R Salem

Syntactic foams comprising glass or thermoplastic microballoons have gained considerable attention in recent years due to mechanical and thermal properties that are advantageous for naval and aerospace applications. This work reports a method for producing syntactic foams with unusually high-volume fraction microballoon loadings (>0.74) and its utilization for the creation of “hybrid” epoxy resin-based syntactic foams comprising various mixtures of glass and thermoplastic microballoons. Microstructural analyses using X-ray micro-computed tomography provided non-destructive quantitative characterization of microballoon packing, confirming the high loading levels suggested by density measurements. By systematically varying the glass/thermoplastic microballoon ratio, it was shown that a range of mechanical properties can be engineered into these lightweight materials. The peak impact force of these syntactic foams can be significantly reduced (∼30% reduction) through combining glass and thermoplastic microballoons in a ratio where the thermoplastic microballoons are the dominant fraction but not the sole microballoon component.


2014 ◽  
Vol 1000 ◽  
pp. 122-125 ◽  
Author(s):  
Martina Drdlová ◽  
Michal Frank ◽  
Jaroslav Buchar ◽  
Josef Krátký

The effect of multi-wall carbon nanotubes content on physico-mechanical properties of glass microspheres-epoxy resin syntactic foam was evaluated experimentally. Syntactic foam with high volume fraction of microspheres (70 vol%) was prepared and modified by 1 to 5 vol% of multi-wall carbon nanotubes. The compressive, flexural and impact strength tests were conducted, the load-displacement curves were captured. The quality of dispersion of nanoparticles was evaluated in relation to the mixing procedure using scanning electron microscope observation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chaitra Venkatesh ◽  
Yuanyuan Chen ◽  
Zhi Cao ◽  
Shane Brennan ◽  
Ian Major ◽  
...  

Abstract Poly (lactic acid)/halloysite nanotube (PLA/HNT) nanocomposites have been studied extensively over the past few years owing to the interesting properties of the polymer, PLA, and the nanoclay, HNT, individually and as composites. In this paper, the influence of the screw speed during extrusion was investigated and was found to have a significant impact on the mechanical and thermal performance of the extruded PLA/HNT nanocomposites. To determine the effect of screw speed on PLA/HNT nanocomposites, 5 and 10 wt% of HNTs were blended into the PLA matrix through compounding at screw speeds of 40, 80, and 140 rpm. Virgin PLA was compounded for comparison. The resultant polymer melt was quench cooled onto a calendar system to produce composite films which were assessed for mechanical, thermal, chemical, and surface properties. Results illustrate that in comparison to 40 and 80 rpm, the virgin PLA when compounded at 140 rpm, indicated a significant increase in the mechanical properties. The PLA/HNT 5 wt% nanocomposite compounded at 140 rpm showed significant improvement in the dispersion of HNTs in the PLA matrix which in turn enhanced the mechanical and thermal properties. This can be attributed to the increased melt shear at higher screw speeds.


2011 ◽  
Vol 82 ◽  
pp. 142-147 ◽  
Author(s):  
Mohamed Altenaiji ◽  
Graham K. Schleyer ◽  
Yo Yang Zhao

Development of a lightweight, strong and energy-absorbing material that has potential application for the protection of vehicles and occupants against impact and blast, is a difficult challenge facing the materials community. Aluminium matrix syntactic foams will be investigated as a possible core material as part of a multi-layered protection system for military vehicles. Aluminium matrix syntactic foams are composite materials consisting of an aluminium matrix implanted with hollow or porous ceramic particles. This paper investigates the mechanical properties of aluminium matrix syntactic foam with different sizes of ceramic micro-spheres and different grades of aluminium, fabricated by the pressure infiltration method. The static crushing behaviour of the foam was investigated under two test conditions using an Instron 4505 machine. Results are compared and discussed. The dynamic compressive response was investigated using a drop-weight impact test machine. It was found that the particle size of the ceramic micro-spheres and the grade of the aluminium metal have a significant effect on the energy absorption capacity of the material. The compressive strength of the syntactic foam was found to increase with increasing compressive strength of the metal matrix.


RSC Advances ◽  
2019 ◽  
Vol 9 (68) ◽  
pp. 39768-39779
Author(s):  
Sarim Khan ◽  
Viney Kumar ◽  
Partha Roy ◽  
Patit Paban Kundu

This two-stage study aims to optimize the amount of halloysite nanotubes and TiO2 in a chitosan/nano-hydroxyapatite composite to tailor the mechanical and biological properties for application in bone tissue engineering.


2019 ◽  
Vol 800 ◽  
pp. 210-215
Author(s):  
Walid Fermas ◽  
Mustapha Kaci ◽  
Remo Merijs Meri ◽  
Janis Zicans

In this paper, the effect of unmodified halloysite nanotubes (HNTs) content on the chemical structure and the thermal and mechanical properties of blends based on starch-grafted-polyethylene (SgP) and high density polyethylene (HDPE) (70/30 w/w) nanocomposites was investigated at various filler content ratios, i.e. 1.5, 3 and 5 wt.%. The study showed the occurrence of chemical interactions between the polymer matrix and HNTs through OH bonding. Further, the addition of HNTs to the polymer blend led to an increase in the crystallization temperature of the nanocomposite samples, in particular at higher filler contents i.e. 3 and 5 wt.%, while the melting temperature remained almost unchanged. Tensile and flexural properties of the nanocomposite samples were however improved compared to the virgin blend with respect to the HNTs content ratio.


Author(s):  
Md. Atiqur Bhuiyan ◽  
Mahesh V. Hosur ◽  
Yaseen Farooq ◽  
Shaik Jeelani

In this study, thermal and mechanical properties of carbon nanofiber infused polyurethane foam were investigated. Low density liquid polyurethane foam composed of Diphenylmethane Diisocyanate (Part A) and Polyol (Part B) was doped with carbon nanofibers (CNF). A high-intensity ultrasonic liquid processor was used to obtain a homogeneous mixture of Diphenylmethane Diisocyanate (Part A) and carbon nanofibers (CNF). The CNF were infused into the Part A of the polyurethane foam through sonic cavitation. The modified foams containing nanoparticles were mixed with Part B (Polyol) using a high-speed mechanical agitator. The mixture was then cast into pre-heated rectangular aluminum molds to form the nano-phased foam panels. Flexure, static and high strain rate compression, and dynamic mechanical analysis (DMA) were performed on neat, 0.2 wt%, 0.4 wt% and 0.6 wt% CNF filled polyurethane foam to identify the effect of adding CNF on the thermal and mechanical properties. The highest improvement on thermal and mechanical properties was obtained with 0.2 wt% loading of CNF. Morphology of the samples was studied through X-ray diffraction.


2012 ◽  
Vol 706-709 ◽  
pp. 729-734 ◽  
Author(s):  
Masahiro Higuchi ◽  
Tadaharu Adachi ◽  
Yuto Yokochi ◽  
Kenta Fujimoto

In the study, novel fabrication processes of functionally-graded (FG) syntactic foams were developed to control distribution of the mechanical properties in the FG foams for highly impact energy absorption. In order to control mechanical properties, the density distributions in FG foams were graded by floating phenomenon of the light-weight micro-balloons in matrix resin during curing process. The density distribution in the foam could be controlled by adjusting the average volume fraction and the turning procedure of the mold before grading the micro-balloons in the foam. The compression tests of the fabricated FG foams suggested that the foams had high absorption of impact energy since the foams collapsed progressively due to the grading of the density distribution.


Sign in / Sign up

Export Citation Format

Share Document