scholarly journals Multifunctional SENSING using 3D printed CNTs/BaTiO3/PVDF nanocomposites

2018 ◽  
Vol 53 (10) ◽  
pp. 1319-1328 ◽  
Author(s):  
Hoejin Kim ◽  
Bethany R Wilburn ◽  
Edison Castro ◽  
Carlos A Garcia Rosales ◽  
Luis A Chavez ◽  
...  

This research studied multifunctional sensing capabilities on nanocomposites composed of poly(vinylidene) fluoride (PVDF), BaTiO3 (BT), and multiwall carbon nanotubes (CNTs) fabricated by fused-deposition modeling 3D printing. To improve the dielectric property within BT/PVDF composites, CNTs have been utilized to promote ultrahigh polarization density and local micro-capacitor among BT and polymer matrix. The 3D printing process provides homogeneous dispersion of nanoparticles, alleviating agglomeration of nanoparticles, and reducing micro-crack/voids in matrix which can enhance their dielectric property. In this research, we demonstrated that by utilizing unique advantages of this material combination and a 3D printing technique, sensing capabilities for temperature and strain can be engineered with different content variations of included BT and CNTs. It is observed that the sensing capability for temperature change with respect to a 25–150℃ range can be improved as both BT and CNTs’ inclusions increase and is maximal with 1.7 wt.% CNTs/60 wt.% BT/PVDF nanocomposites, while the sensing capability for strain change in a 0–20% range is maximal with 1 wt.% CNTs/12 wt.% BT/PVDF nanocomposites. In addition, it is found that the best combination for mechanical toughness is 1 wt.% CNTs/12 wt.% BT/PVDF with 24.2 MPa and 579% in ultimate tensile strength and failure strain, respectively. These results show the technique to 3D print multifunctional nanocomposites with temperature and strain sensing capabilities as well as increased mechanical property. Furthermore, this research demonstrated the feasibility for large-scale multifunctional sensor device manufacturing with freedom of design, low-cost, and an accelerated process.

2016 ◽  
Vol 12 ◽  
pp. 2776-2783 ◽  
Author(s):  
Philip J Kitson ◽  
Stefan Glatzel ◽  
Leroy Cronin

An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic ‘programs’ which can run on similar low cost, user-constructed robotic platforms towards an ‘open-source’ regime in the area of chemical synthesis.


2020 ◽  
Vol 62 (7) ◽  
pp. 727-732
Author(s):  
L. Zárybnická ◽  
D. Machová ◽  
K. Dvořák

Abstract This paper presents the effect of additives on the quality of a product created by 3D print. The product is created by the most widely used 3D printing method - Fused Deposition Modeling (FDM). Polylactic acid (PLA) filaments are tested without and with the addition of carbon fibers or copper. The specimens are characterized by different methods, such as mechanical testing, measuring roughness by digital microscope with a large depth of field and thermal analysis. In fact, FDM is a problematic process with numerous criterions that affect printing quality. Printing parameters such as print temperature, pad temperature, print speed for 3D printing, printing orientation etc. have an important impact on the performance and quality of FDM components. Due to the correct parameters, the product of the required quality with a longer service life is obtained. The results of testing show that the quantity and choice of the right ingredient has a major impact on the mechanical properties and overall quality of the investigated product.


2014 ◽  
Vol 20 (5) ◽  
pp. 403-412 ◽  
Author(s):  
Victor A. Lifton ◽  
Gregory Lifton ◽  
Steve Simon

Purpose – This study aims to investigate the options for additive rapid prototyping methods in microelectromechanical systems (MEMS) technology. Additive rapid prototyping technologies, such as stereolithography (SLA), fused deposition modeling (FDM) and selective laser sintering (SLS), all commonly known as three-dimensional (3D) printing methods, are reviewed and compared with the resolution requirements of the traditional MEMS fabrication methods. Design/methodology/approach – In the 3D print approach, the entire assembly, parts and prototypes are built using various plastic and metal materials directly from the software file input, completely bypassing any additional processing steps. The review highlights their potential place in the overall process flow to reduce the complexity of traditional microfabrication and long processing cycles needed to test multiple prototypes before the final design is set. Findings – Additive manufacturing (AM) is a promising manufacturing technique in micro-device technology. Practical implications – In the current state of 3D printing, microfluidic and lab-on-a-chip devices for fluid handling and manipulation appear to be the most compatible with the 3D print methods, given their fairly coarse minimum feature size of 50-500 μm. Future directions in the 3D materials and method development are identified, such as adhesion and material compatibility studies of the 3D print materials, wafer-level printing and conductive materials development. One of the most important goals should be the drive toward finer resolution and layer thickness (1-10 μm) to stimulate the use of the 3D printing in a wider array of MEMS devices. Originality/value – The review combines two discrete disciplines, microfabrication and AM, and shows how microfabrication and micro-device commercialization may benefit from employing methods developed by the AM community.


2021 ◽  
Vol 18 (1) ◽  
pp. 07-13
Author(s):  
Neha Thakur ◽  
Hari Murthy

Three-dimensional printing (3DP) is a digitally-controlled additive manufacturing technique used for fast prototyping. This paper reviews various 3D printing techniques like Selective Laser Sintering (SLS), Fused Deposition Modeling, (FDM), Semi-solid extrusion (SSE), Stereolithography (SLA), Thermal Inkjet (TIJ) Printing, and Binder jetting 3D Printing along with their application in the field of medicine. Normal medicines are based on the principle of “one-size-fits-all”. This is not true always, it is possible medicine used for curing one patient is giving some side effects to another. To overcome this drawback “3D Printed medicines” are developed. In this paper, 3D printed medicines forming different Active Pharmaceutical Ingredients (API) are reviewed. Printed medicines are capable of only curing the diseases, not for the diagnosis. Nanomedicines have “theranostic” ability which combines therapeutic and diagnostic. Nanoparticles are used as the drug delivery system (DDS) to damaged cells’ specific locations. By the use of nanomedicine, the fast recovery of the disease is possible. The plant-based nanoparticles are used with herbal medicines which give low-cost and less toxic medication called nanobiomedicine. 4D and 5D printing technology for the medical field are also enlightened in this paper.


Author(s):  
Vadym Shalenko ◽  
Boris Korniychuk ◽  
Andriі Masluyk

Not much time has passed since the appearance of the first 3D printer. Today there are many different printers. They differ in various 3D printing technologies, namely: Stereolithography – SL, Selective Laser Sintering, Fused Deposition Modeling – FDM, Laminated Object Manufacturing – LOM, Polyjet and Ployjet Matrix. In recent years, the spread of 3D printing technology has become and continues to be used more and more today. Of course, in the future we will see a large-scale spread of additive methods, but the practical application of 3D printing today is available to everyone. Melting deposition modeling technologies have become widespread and available. The authors in this article consider possible options for upgrading the mounting of the end sensor of the Z Axis and automating the process of calibration of the zero gap of the extruder nozzle relative to the working surface of the printer. This calibration is important. This affects the accuracy and printing process of the future plastic model. During the operation of the 3D printer, it is often necessary to service the extruder, which forces the process of calibrating the zero gap of the printer nozzle. Optimally correct selected nozzle clearance affects the accuracy, geometry of the model and printing as a whole. It also allows you to get rid of peeling off the model from the desktop surface and the destruction of the model during printing.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3700
Author(s):  
Patrich Ferretti ◽  
Gian Maria Santi ◽  
Christian Leon-Cardenas ◽  
Marco Freddi ◽  
Giampiero Donnici ◽  
...  

Fused Deposition Modeling (FDM) 3D printing is the most widespread technology in additive manufacturing worldwide that thanks to its low costs, finished component applications, and the production process of other parts. The need for lighter and higher-performance components has led to an increased usage of polymeric matrix composites in many fields ranging from automotive to aerospace. The molds used to manufacture these components are made with different technologies, depending on the number of pieces to be made. Usually, they are fiberglass molds with a thin layer of gelcoat to lower the surface roughness and obtain a smooth final surface of the component. Alternatively, they are made from metal, thus making a single carbon fiber prototype very expensive due to the mold build. Making the mold using FDM technology can be a smart solution to reduce costs, but due to the layer deposition process, the roughness is quite high. The surface can be improved by reducing the layer height, but it is still not possible to reach the same degree of surface finish of metallic or gelcoat molds without the use of fillers. Thermoplastic polymers, also used in the FDM process, are generally soluble in specific solvents. This aspect can be exploited to perform chemical smoothing of the external surface of a component. The combination of FDM and chemical smoothing can be a solution to produce low-cost molds with a very good surface finish.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2144
Author(s):  
Maria Sevastaki ◽  
Mirela Petruta Suchea ◽  
George Kenanakis

In the present work, the use of nanocomposite polymeric filaments based on 100% recycled solid polystyrene everyday products, enriched with TiO2 nanoparticles with mass concentrations up to 40% w/w, and the production of 3D photocatalytic structures using a typical fused deposition modeling (FDM)-type 3D printer are reported. We provide evidence that the fabricated 3D structures offer promising photocatalytic properties, indicating that the proposed technique is indeed a novel low-cost alternative route for fabricating large-scale photocatalysts, suitable for practical real-life applications.


2018 ◽  
Vol 6 (26) ◽  
pp. 12308-12315 ◽  
Author(s):  
Jose A. Bencomo ◽  
Scott T. Iacono ◽  
Jena McCollum

Poly(methyl methacrylate) (PMMA) was added to aluminum/poly(vinylidene fluoride) (Al/PVDF) energetic blends to enhance melt flow rate and adhesion in a fused deposition modeling (FDM) manufacturing scenario.


2020 ◽  
Vol 35 (8) ◽  
pp. 916-921
Author(s):  
Aysu Belen ◽  
Evrim Tetik

Placing dielectric lens structures into an antenna's aperture has proven to be one of the most reliable methods of enhancing its gain. However, the selected material and the prototyping method usually limit their fabrication process. With the advances in 3D printing technology and their applications, the microwave designs that were either impractical or impossible in the past to manufacture using traditional methods, are now feasible. Herein, a novel prototyping method by using 3D-printer technology for low-cost, broadband, and high gain dielectric lens designs has been presented. Firstly, the elliptical lens design has been modeled in the 3D EM simulation environment. Then fused deposition modeling based 3D-printing method has been used for the fabrication of the dielectric lens. The measured results of the 3D printed antenna show that the lens antenna has a realized gain of 17 to 20.5 dBi over 8-12 GHz. Moreover, the comparison of the prototyped antenna with its counterpart dielectric lens antenna in the literature has indicated that the proposed method is more efficient, more beneficial, and has a lower cost.


2020 ◽  
pp. 089270572095319 ◽  
Author(s):  
Sudhir Kumar ◽  
Rupinder Singh ◽  
Mohit Singh ◽  
TP Singh ◽  
Ajay Batish

The poly-lactic acid (PLA), bio compatible polyamide (PA6) and TiO2 has established bio-medical applications especially in 3D printing of scaffolds. But hitherto little has been reported on improving the performance of multi-material matrix for PLA-PA6/TiO2 especially in 3D printing application of biomedical scaffolds. The anti-bacterial properties of PA6/TiO2 make it worthy to be explored with PLA matrix in multi layered fashion on the platform of fused deposition modeling (FDM) being low cost 3D printing technology for in house development of scaffolds. In this work an effort has been made for in-house development of feedstock filaments of PLA and PA6/TiO2 based polymeric composite matrix on twin screw extrusion (TSE) machine. Further the feedstock filament wires were used on FDM to establish the flexural, wear and morphological properties of multi-material 3D printed functional prototype. The results of the study suggest that for flexural strength, infill speed: 90mm/s; infill pattern: triangular and layer combination as 5 consecutive layers of PLA and 5 consecutive layers of PA6/TiO2 are the optimized conditions for FDM printing. The wear testing results suggest that the composite of PA6/TiO2 held low wear rate (823 µm) in comparison to PLA (wear rate: 1092 µm). Further porosity testing (based upon optical photomicrographs) at ×100 and fractured surface analysis at ×30 supported the observed trends for flexural and wear testing. The photomicrographs of fractured surface were 3D rendered to predict the role of surface roughness (Ra) profile for flexural properties. The mechanical and morphological observations are also supported with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analysis.


Sign in / Sign up

Export Citation Format

Share Document