An energy-based model for the wear of unidirectional carbon fiber reinforced epoxy

2020 ◽  
Vol 54 (28) ◽  
pp. 4535-4544
Author(s):  
B Cheng ◽  
M Kortschot

The wear resistance of unidirectional carbon fiber reinforced epoxy under severe abrasive sliding conditions was studied. It was found that unidirectional laminates tested with the fibers parallel to the sliding direction (UDp) were more wear resistant than the same laminates tested with fibers transverse to the sliding direction (UDap) under the same set of test conditions. A novel energy-based model was developed to explain the difference in the wear rates. It was found that the difference in wear rates between the two orientations was due to differences in the average volume to surface area ratio of the debris, the energy required to generate new surfaces, and a new k factor that represents the fraction of the total friction energy used for creating wear particles. Furthermore, wear volume per sliding distance was found to be linearly proportional the total frictional energy dissipation for both orientations. These findings can be used to simplify wear predictions for industrial applications.

2021 ◽  
pp. 28-37
Author(s):  
P. N. Shkatov ◽  
G. A. Didin ◽  
A. A. Ermolaev

The paper is concerned with increasing sensitivity of eddy current nondestructive testing of most dangerous delamination in carbon-fiber reinforced plastics (CFRP). Increased sensitivity is achieved by separate registration and comparison of eddy current signals obtained from a set of stratifications of carbon fibers with the same orientation. The separation of eddy current signals is possible due to pronounced anisotropy of the electrical conductivity of the layers dominant in the direction of the fibers of the corresponding layer. Eddy-current signals are registered by eddy current probes with maximum sensitivity in a given angular direction. Prior to the scan eddy current signals of the probe are leveled on a defect-free area. The influence of the working gap on the difference between the eddy current signals of the probe is suppressed by normalizing it according to one of the signals. The analysis of the registered signals from delamination has been performed using an approximate calculation model. The reliability of the obtained results has been confirmed by comparison with experimental results and calculations using the finite element method.


2016 ◽  
Vol 68 (2) ◽  
pp. 212-219 ◽  
Author(s):  
Juan Wu ◽  
Ziming Kou ◽  
Gongjun Cui

Purpose – The purpose of this paper is to prepare carbon fiber-reinforced polyimide matrix composites and to investigate the single role of carbon fiber in polyimide composites on tribological performance under distilled water condition. Design/methodology/approach – Three carbon fiber-reinforced polyimide matrix composites were fabricated by using a hot press molding technique. The tribological behaviors of carbon fiber-reinforced polyimide matrix composites sliding against steel ball were evaluated with a ball-on-disk tribotester under distilled water condition. Meanwhile, the effect of different length of carbon fiber on the wear resistance of polyimide matrix composites was investigated during the sliding process. Findings – The friction coefficients and specific wear rates of polyimide composites containing 100 μm carbon fibers were lower than those of other specimens. The wear mechanism of carbon fiber-reinforced composites was delamination under distilled water condition. The interfacial combination between the carbon fiber and matrix became worse with the increase of length of carbon fiber. Originality/value – This paper reported the effect of the different length of carbon fiber on polyimide matrix composites to prepare mechanical parts in mining industrial fields.


Author(s):  
Fei Lu ◽  
Jian Liu

This paper presents a numerical method for simulating progressive wear of the carbon-fiber-reinforced carbon matrix composite used in rotary gas seals due to high experimental cost. In this study, the carbon-fiber-reinforced carbon matrix composite wear rates are experimentally measured, and a formula for the carbon-fiber-reinforced carbon matrix composite wear rates and material design parameters (orientation angles and densities) and operating parameters (load and velocities) is fitted as an input to the wear simulation. A finite element incremental wear simulation procedure for the pin-on-disk wear problem is presented by calculating the local nodal wear rate and wear direction and by introducing the Arbitrary Lagrangian Eulerian adaptive meshing method. In the procedure, the relation between the anisotropy of carbon-fiber-reinforced carbon matrix composite and the varied orientation angle is considered. Results show that the calculated wear volume agrees well with the experimental data. And then the numerical methodology is utilized to investigate the effects of time, orientation angle and operating conditions on the disk wear. The developed numerical methodology could be applied to other sliding wear problems in engineering machinery.


2014 ◽  
Vol 697 ◽  
pp. 62-66
Author(s):  
Hong Fei Wang ◽  
Hua Zhou Li ◽  
Long Sheng Lu ◽  
Ying Xi Xie ◽  
Yu Xiao

Due to its excellent performance, carbon fiber-reinforced plastics (CFRP) have been widely applied in industrial applications. The phenomenon of delamination can readily occur when drilling CFRP composites, which affects the quality of drilling holes. To effectively control the generation of processing defects, this paper focused on the analysis of the thrust force and the delamination factor. The delamination analysis was performed using graphs of the spindle speed, feed rate and drill diameter as independent parameters. The results suggest that there was a positive correlation between the delamination factor Fd and the thrust force Fz. The delamination factor decreases with increases in the spindle speed and increases with increases in the feed rate or with increases in the drill diameter. Based on the experimental data, this paper established a formula model of the delamination factor Fd, which would promote the further study of drilling CFRP composites.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2474
Author(s):  
Basheer A. Alshammari ◽  
Mohammed S. Alsuhybani ◽  
Alaa M. Almushaikeh ◽  
Bander M. Alotaibi ◽  
Asma M. Alenad ◽  
...  

Carbon fiber-reinforced polymers are considered a promising composite for many industrial applications including in the automation, renewable energy, and aerospace industries. They exhibit exceptional properties such as a high strength-to-weight ratio and high wear resistance and stiffness, which give them an advantage over other conventional materials such as metals. Various polymers can be used as matrices such as thermosetting, thermoplastic, and elastomers polymers. This comprehensive review focuses on carbon fiber-reinforced thermoplastic polymers due to the advantages of thermoplastic compared to thermosetting and elastomer polymers. These advantages include recyclability, ease of processability, flexibility, and shorter production time. The related properties such as strength, modulus, thermal conductivity, and stability, as well as electrical conductivity, are discussed in depth. Additionally, the modification techniques of the surface of carbon fiber, including the chemical and physical methods, are thoroughly explored. Overall, this review represents and summarizes the future prospective and research developments carried out on carbon fiber-reinforced thermoplastic polymers.


2020 ◽  
pp. 002199832095975
Author(s):  
Jeong U Roh ◽  
Dong Jun Kwon ◽  
Joong Seob Guk ◽  
Jin Gon Kim ◽  
Hyun Young Lee ◽  
...  

In the present study, the difference of long carbon fiber reinforced thermoplastic (C-LFT) depending on the type of polymer resins at the same carbon fiber content (30 wt.%) was compared. The different types of C-LFT were made using five polymer resins such as polyamide 6, polyamide 6,6, polycarbonate, high density polyethylene and polypropylene. Tensile test, flexural test, and unnotched Izod impact test were carried out and the cause of difference in the mechanical properties was considered by analyzing the adhesion characteristics. Fracture appearance and work of adhesion between the fiber and the resin were observed. In addition, the difference and its cause in electromagnetic interference shielding effectiveness (EMI SE) was investigated. From the results, the polyamide 6 is most appropriate to the carbon fiber among the samples in the aspects of interfacial shear strength and fiber dispersion.


Author(s):  
Hong-Ming Lin ◽  
C. H. Liu ◽  
R. F. Lee

Polyetheretherketone (PEEK) is a crystallizable thermoplastic used as composite matrix materials in application which requires high yield stress, high toughness, long term high temperature service, and resistance to solvent and radiation. There have been several reports on the crystallization behavior of neat PEEK and of CF/PEEK composite. Other reports discussed the effects of crystallization on the mechanical properties of PEEK and CF/PEEK composites. However, these reports were all concerned with the crystallization or melting processes at or close to atmospheric pressure. Thus, the effects of high pressure on the crystallization of CF/PEEK will be examined in this study.The continuous carbon fiber reinforced PEEK (CF/PEEK) laminate composite with 68 wt.% of fibers was obtained from Imperial Chemical Industry (ICI). For the high pressure experiments, HIP was used to keep these samples under 1000, 1500 or 2000 atm. Then the samples were slowly cooled from 420 °C to 60 °C in the cooling rate about 1 - 2 degree per minute to induce high pressure crystallization. After the high pressure treatment, the samples were scanned in regular DSC to study the crystallinity and the melting temperature. Following the regular polishing, etching, and gold coating of the sample surface, the scanning electron microscope (SEM) was used to image the microstructure of the crystals. Also the samples about 25mmx5mmx3mm were prepared for the 3-point bending tests.


Sign in / Sign up

Export Citation Format

Share Document