scholarly journals S100 Protein Subcellular Localization During Epidermal Differentiation and Psoriasis

2003 ◽  
Vol 51 (5) ◽  
pp. 675-685 ◽  
Author(s):  
Ann-Marie Broome ◽  
David Ryan ◽  
Richard L. Eckert

S100 proteins are calcium-activated signaling proteins that interact with target proteins to modulate biological processes. Our present studies compare the level of expression, and cellular localization of S100A7, S100A8, S100A9, S100A10, and S100A11 in normal and psoriatic epidermis. S100A7 and S100A11 are present in the basal and spinous layers in normal epidermis. These proteins appear in the nucleus and cytoplasm in basal cells but are associated with the plasma membrane in spinous cells. S100A10 is present in basal and spinous cells, in the cytoplasm, and is associated with the plasma membrane. S100A8 and S100A9 are absent or are expressed at minimal levels in normal epidermis. In involved psoriatic tissue, S100A10 and S100A11 levels remain unchanged, whereas, S100A7, S100A8, and S100A9 are markedly overexpressed. The pattern of expression and subcellular localization of S100A7 is similar in normal and psoriatic tissue. S100A8 and S100A9 are strongly expressed in the basal and spinous layers in psoriasis-involved tissue. In addition, we demonstrate that S100A7, S100A10, and S100A11 are incorporated into detergent and reducing agent-resistant multimers, suggesting that they are in vivo trans-glutaminase substrates. S100A8 and S100A9 did not form these larger complexes. These results indicate that S100 proteins localize to the plasma membrane in differentiated keratinocytes, suggesting a role in regulating calcium-dependent, membrane-associated events. These studies also indicate, as reported previously, that S100A7, S100A8, and S100A9 expression is markedly altered in psoriasis, suggesting a role for these proteins in disease pathogenesis.

2006 ◽  
Vol 396 (2) ◽  
pp. 201-214 ◽  
Author(s):  
Liliana Santamaria-Kisiel ◽  
Anne C. Rintala-Dempsey ◽  
Gary S. Shaw

The S100 proteins comprise at least 25 members, forming the largest group of EF-hand signalling proteins in humans. Although the proteins are expressed in many tissues, each S100 protein has generally been shown to have a preference for expression in one particular tissue or cell type. Three-dimensional structures of several S100 family members have shown that the proteins assume a dimeric structure consisting of two EF-hand motifs per monomer. Calcium binding to these S100 proteins, with the exception of S100A10, results in an approx. 40° alteration in the position of helix III, exposing a broad hydrophobic surface that enables the S100 proteins to interact with a variety of target proteins. More than 90 potential target proteins have been documented for the S100 proteins, including the cytoskeletal proteins tubulin, glial fibrillary acidic protein and F-actin, which have been identified mostly from in vitro experiments. In the last 5 years, efforts have concentrated on quantifying the protein interactions of the S100 proteins, identifying in vivo protein partners and understanding the molecular specificity for target protein interactions. Furthermore, the S100 proteins are the only EF-hand proteins that are known to form both homo- and hetero-dimers, and efforts are underway to determine the stabilities of these complexes and structural rationales for their formation and potential differences in their biological roles. This review highlights both the calcium-dependent and -independent interactions of the S100 proteins, with a focus on the structures of the complexes, differences and similarities in the strengths of the interactions, and preferences for homo- compared with hetero-dimeric S100 protein assembly.


2013 ◽  
Vol 288 (20) ◽  
pp. 14332-14340 ◽  
Author(s):  
Shuta Asai ◽  
Tatsushi Ichikawa ◽  
Hironari Nomura ◽  
Michie Kobayashi ◽  
Yusuke Kamiyoshihara ◽  
...  

Calcium-dependent protein kinases (CDPKs) are Ca2+ sensors that regulate diverse biological processes in plants and apicomplexans. However, how CDPKs discriminate specific substrates in vivo is still largely unknown. Previously, we found that a potato StCDPK5 is dominantly localized to the plasma membrane and activates the plasma membrane NADPH oxidase (RBOH; for respiratory burst oxidase homolog) StRBOHB by direct phosphorylation of the N-terminal region. Here, we report the contribution of the StCDPK5 N-terminal variable (V) domain to activation of StRBOHB in vivo using heterologous expression system in Nicotiana benthamiana. Mutations of N-terminal myristoylation and palmitoylation sites in the V domain eliminated the predominantly plasma membrane localization and the capacity of StCDPK5 to activate StRBOHB in vivo. A tomato SlCDPK2, which also contains myristoylation and palmitoylation sites in its N terminus, phosphorylated StRBOHB in vitro but not in vivo. Functional domains responsible for activation and phosphorylation of StRBOHB were identified by swapping regions for each domain between StCDPK5 and SlCDPK2. The substitution of the V domain of StCDPK5 with that of SlCDPK2 abolished the activation and phosphorylation abilities of StRBOHB in vivo and relocalized the chimeric CDPK to the trans-Golgi network, as observed for SlCDPK2. Conversely, SlCDPK2 substituted with the V domain of StCDPK5 localized to the plasma membrane and activated StRBOHB. These results suggest that the V domains confer substrate specificity in vivo by dictating proper subcellular localization of CDPKs.


1999 ◽  
Vol 339 (2) ◽  
pp. 299-307 ◽  
Author(s):  
Arthur L. KRUCKEBERG ◽  
Ling YE ◽  
Jan A. BERDEN ◽  
Karel van DAM

The Hxt2 glucose transport protein of Saccharomyces cerevisiae was genetically fused at its C-terminus with the green fluorescent protein (GFP). The Hxt2-GFP fusion protein is a functional hexose transporter: it restored growth on glucose to a strain bearing null mutations in the hexose transporter genes GAL2 and HXT1 to HXT7. Furthermore, its glucose transport activity in this null strain was not markedly different from that of the wild-type Hxt2 protein. We calculated from the fluorescence level and transport kinetics that induced cells had 1.4×105 Hxt2-GFP molecules per cell, and that the catalytic-centre activity of the Hxt2-GFP molecule in vivo is 53 s-1 at 30 °C. Expression of Hxt2-GFP was induced by growth at low concentrations of glucose. Under inducing conditions the Hxt2-GFP fluorescence was localized to the plasma membrane. In a strain impaired in the fusion of secretory vesicles with the plasma membrane, the fluorescence accumulated in the cytoplasm. When induced cells were treated with high concentrations of glucose, the fluorescence was redistributed to the vacuole within 4 h. When endocytosis was genetically blocked, the fluorescence remained in the plasma membrane after treatment with high concentrations of glucose.


2021 ◽  
Vol 7 (7) ◽  
pp. 514
Author(s):  
Mariangela Dionysopoulou ◽  
George Diallinas

Recent biochemical and biophysical evidence have established that membrane lipids, namely phospholipids, sphingolipids and sterols, are critical for the function of eukaryotic plasma membrane transporters. Here, we study the effect of selected membrane lipid biosynthesis mutations and of the ergosterol-related antifungal itraconazole on the subcellular localization, stability and transport kinetics of two well-studied purine transporters, UapA and AzgA, in Aspergillus nidulans. We show that genetic reduction in biosynthesis of ergosterol, sphingolipids or phosphoinositides arrest A. nidulans growth after germling formation, but solely blocks in early steps of ergosterol (Erg11) or sphingolipid (BasA) synthesis have a negative effect on plasma membrane (PM) localization and stability of transporters before growth arrest. Surprisingly, the fraction of UapA or AzgA that reaches the PM in lipid biosynthesis mutants is shown to conserve normal apparent transport kinetics. We further show that turnover of UapA, which is the transporter mostly sensitive to membrane lipid content modification, occurs during its trafficking and by enhanced endocytosis, and is partly dependent on autophagy and Hect-type HulARsp5 ubiquitination. Our results point out that the role of specific membrane lipids on transporter biogenesis and function in vivo is complex, combinatorial and transporter-dependent.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 279-286 ◽  
Author(s):  
A Sarkar ◽  
P Yang ◽  
YH Fan ◽  
ZM Mu ◽  
R Hauptmann ◽  
...  

Annexin VIII is a calcium-dependent phospholipid-binding protein previously identified as a blood anticoagulant based on in vitro studies. However, the physiologic function of annexin VIII remains unknown. In acute promyelocytic leukemia (APL) the annexin VIII gene is highly expressed, but its expression is undetectable in the blasts of other acute leukemias. In the present investigation, we showed using the APL-derived NB4 cell line that expression of the annexin VIII gene is regulated at the transcription level during induced differentiation by all-trans retinoic acid (ATRA). The half-life of the annexin VIII mRNA is about 5 to 6 hours, as determined by using actinomycin D as a transcription inhibitor. Analysis of the expression of annexin VIII protein in NB4 cells and in APL samples showed a consistent expression of a predominant 36-kD protein and a weak 72-kD protein. After ATRA- induced differentiation of NB4 cells, the annexin VIII protein level reduced gradually, but a detectable level persisted even after 4 days of induction. Because annexin VIII mRNA becomes undetectable after 48 hours of ATRA induction, this result indicates that annexin VIII is a relatively stable protein. A multiple tissue Northern blot analysis was performed, and we found that annexin VIII is normally expressed in the placenta and the lung. Cellular localization of the annexin VIII protein was determined by immunofluorescence staining and subcellular fractionation. These results indicated that annexin VIII is predominantly localized to the plasma membrane. The annexin VIII is neither an extracellular protein nor associated with the cell surface suggesting that it does not play a role in blood coagulation in vivo. The plasma membrane localization and its property as a phospholipase inhibitor suggests that annexin VIII may have a role in the signal transduction pathway in the APL cells.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 279-286 ◽  
Author(s):  
A Sarkar ◽  
P Yang ◽  
YH Fan ◽  
ZM Mu ◽  
R Hauptmann ◽  
...  

Abstract Annexin VIII is a calcium-dependent phospholipid-binding protein previously identified as a blood anticoagulant based on in vitro studies. However, the physiologic function of annexin VIII remains unknown. In acute promyelocytic leukemia (APL) the annexin VIII gene is highly expressed, but its expression is undetectable in the blasts of other acute leukemias. In the present investigation, we showed using the APL-derived NB4 cell line that expression of the annexin VIII gene is regulated at the transcription level during induced differentiation by all-trans retinoic acid (ATRA). The half-life of the annexin VIII mRNA is about 5 to 6 hours, as determined by using actinomycin D as a transcription inhibitor. Analysis of the expression of annexin VIII protein in NB4 cells and in APL samples showed a consistent expression of a predominant 36-kD protein and a weak 72-kD protein. After ATRA- induced differentiation of NB4 cells, the annexin VIII protein level reduced gradually, but a detectable level persisted even after 4 days of induction. Because annexin VIII mRNA becomes undetectable after 48 hours of ATRA induction, this result indicates that annexin VIII is a relatively stable protein. A multiple tissue Northern blot analysis was performed, and we found that annexin VIII is normally expressed in the placenta and the lung. Cellular localization of the annexin VIII protein was determined by immunofluorescence staining and subcellular fractionation. These results indicated that annexin VIII is predominantly localized to the plasma membrane. The annexin VIII is neither an extracellular protein nor associated with the cell surface suggesting that it does not play a role in blood coagulation in vivo. The plasma membrane localization and its property as a phospholipase inhibitor suggests that annexin VIII may have a role in the signal transduction pathway in the APL cells.


2007 ◽  
Vol 176 (2) ◽  
pp. 147-154 ◽  
Author(s):  
Terry Lechler ◽  
Elaine Fuchs

Despite their importance in cell shape and polarity generation, the organization of microtubules in differentiated cells and tissues remains relatively unexplored in mammals. We generated transgenic mice in which the epidermis expresses a fluorescently labeled microtubule-binding protein and show that in epidermis and in cultured keratinocytes, microtubules stereotypically reorganize as they differentiate. In basal cells, microtubules form a cytoplasmic network emanating from an apical centrosome. In suprabasal cells, microtubules concentrate at cell–cell junctions. The centrosome retains its ability to nucleate microtubules in differentiated cells, but no longer anchors them. During epidermal differentiation, ninein, which is a centrosomal protein required for microtubule anchoring (Dammermann, A., and A. Merdes. 2002. J. Cell Biol. 159:255–266; Delgehyr, N., J. Sillibourne, and M. Bornens. 2005. J. Cell Sci. 118:1565–1575; Mogensen, M.M., A. Malik, M. Piel, V. Bouckson-Castaing, and M. Bornens. 2000. J. Cell Sci. 113:3013–3023), is lost from the centrosome and is recruited to desmosomes by desmoplakin (DP). Loss of DP prevents accumulation of cortical microtubules in vivo and in vitro. Our work uncovers a differentiation-specific rearrangement of the microtubule cytoskeleton in epidermis, and defines an essential role for DP in the process.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Teruhiko Makino ◽  
Megumi Mizawa ◽  
Yoko Yoshihisa ◽  
Seiji Yamamoto ◽  
Yoshiaki Tabuchi ◽  
...  

Abstract Epidermal differentiation is a complex process that requires the regulated and sequential expression of various genes. Most fused-type S100 proteins are expressed in the granular layer and it is hypothesized that these proteins may be associated with cornification and barrier formation. We previously identified a member of the fused-type S100 proteins, Trichohyalin-like 1 (TCHHL1) protein. TCHHL1 is distributed in the basal layer of the normal epidermis. Furthermore, the expression is markedly increased in cancerous/non-cancerous skin samples with the hyperproliferation of keratinocytes. We herein examined the role of TCHHL1 in normal human keratinocytes (NHKs) and squamous cell carcinoma (SCC). The knockdown of TCHHL1 by transfection with TCHHL1 siRNA significantly inhibited proliferation and induced the early apoptosis of NHKs. In TCHHL1-knockdown NHKs, the level of extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation was markedly decreased. In addition, the slight inhibition of v-akt murine thymoma viral oncogene homolog (AKT) phosphorylation and upregulation of forkhead box-containing protein O1(FOXO1), B-cell lymphoma2 (BCL2) and Bcl2-like protein 11 (BCL2L11) was observed. Skin-equivalent models built by TCHHL1-knockdown NHKs showed a markedly hypoplastic epidermis. These findings highlight that TCHHL1 plays an important role in homeostasis of the normal epidermis. TCHHL1 was expressed in the growing cells of cutaneous SCC; therefore, we next examined an association with the cell growth in HSC-1 cells (a human SCC line). In HSC-1 cells, the knockdown of TCHHL1 also suppressed cell proliferation and induced apoptosis. These cells showed an inhibition of phosphorylation of ERK1/2, AKT and signal transducers and activator of transcription 3, and the significant upregulation of FOXO1, BCL2, and BCL2L11. Accordingly, TCHHL1 is associated with survival of cutaneous SCC. In addition, we hypothesize that TCHHL1 may be a novel therapeutic target in cutaneous SCC.


1999 ◽  
Vol 112 (12) ◽  
pp. 1901-1913
Author(s):  
S.N. Daigle ◽  
C.E. Creutz

The transcription of three annexin genes in the nematode, Caenorhabditis elegans, was detected by reverse transcriptase/polymerase chain reaction amplification of messenger RNAs. The highest level of expression was from the nex-1 gene, with lower levels detected for the nex-2 and nex-3 genes. The expression of nex-1 was reduced in the Dauer larval stage relative to the other annexins, correlating with the absence of the spermathecal valves, a major site of nex-1 protein localization. Recombinant nex-1 protein was expressed in yeast, isolated by calcium-dependent binding to acidic phospholipids, and its membrane binding and aggregating activities characterized using bovine chromaffin granules as a representative intracellular substrate. Binding to granule membranes was promoted by calcium with half-maximal binding seen at 630 microM calcium. Chromaffin granule aggregation was similarly promoted by the nex-1 protein at 630 microM calcium. This low sensitivity to calcium suggests the annexin can only be activated in vivo near the plasma membrane or other sources of calcium. Sequences including the nex-1 promoter were fused to the gene for green fluorescent protein and this construct was introduced into nematodes by microinjection. Examination of transgenic offspring revealed specific nex-1 promoter activity in the pharynx, the hypodermal cells, the vulva, and the spermathecal valve, locations in which the annexin may function in collagen secretion/deposition and membrane-membrane interactions. A sensitive anti-nex-1 antibody labelled with rhodamine was injected into body cavities of the nematode but did not detect extracellular nex-1 protein. Therefore, this annexin is apparently cytosolic and may function on the cytoplasmic side of the plasma membrane of the spermathecal valve to chaperon the folding of this membrane during the opening and closing of the valve.


Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 4260-4268 ◽  
Author(s):  
Thomas Vogl ◽  
Stephan Ludwig ◽  
Matthias Goebeler ◽  
Anke Strey ◽  
Irmgard S. Thorey ◽  
...  

Abstract MRP14 (S100A9) is the major calcium-binding protein of neutrophils and monocytes. Targeted gene disruption reveals an essential role of this S100 protein for transendothelial migration of phagocytes. The underlying molecular mechanism comprises major alterations of cytoskeletal metabolism. MRP14, in complex with its binding partner MRP8 (S100A8), promotes polymerization of microtubules. MRP14 is specifically phosphorylated by p38 mitogen-activated protein kinase (MAPK). This phosphorylation inhibits MRP8/MRP14-induced tubulin polymerization. Phosphorylation of MRP14 is antagonistically regulated by binding of MRP8 and calcium. The biologic relevance of these findings is confirmed by the fact that MAPK p38 fails to stimulate migration of MRP14-/- granulocytes in vitro and MRP14-/- mice show a diminished recruitment of granulocytes into the granulation tissue during wound healing in vivo. MRP14-/- granulocytes contain significantly less polymerized tubulin, which subsequently results in minor activation of Rac1 and Cdc42 after stimulation of p38 MAPK. Thus, the complex of MRP8/MRP14 is the first characterized molecular target integrating MAPK- and calcium-dependent signals during migration of phagocytes.


Sign in / Sign up

Export Citation Format

Share Document