Inhibition of Cell Proliferation in Renal Failure and its Significance to the Uraemic Syndrome: A Review

1975 ◽  
Vol 20 (6) ◽  
pp. 317-327 ◽  
Author(s):  
Frances T. McDermott ◽  
Andrew J. Galbraith ◽  
Russell J. Corlett

The effect of acute and chronic renal failure on cell proliferation in rapidly dividing tissues has been examined in man and animal models. The evidence reviewed supports the hypothesis that renal failure results in a general inhibition of cell proliferation. Cell population kinetic studies of gastrointestinal and skin epithelia in experimental acute renal failure show a prolongation of the cell generation cycle. Less detailed investigations of other proliferative cell systems indicate an inhibitory effect on proliferation within the generative compartment of the erythroid series, lymphoid tissue, seminiferous epithelia and wound granulation tissue. This inhibition appears partly responsible for anaemia and impaired wound healing and may contribute to the abnormal immune responses, gastrointestinal tract lesions and male sterility found in renal failure.

Author(s):  
V. B. Dolgo-Saburov ◽  
N. I. Chalisova ◽  
L. V. Lyanginen ◽  
E. S. Zalomaeva

In an organotypic culture, an investigation was conducted into combined effects of cyclophosphamide DNA as synthesis inhibitor used to model a resorptive action of mustard gas, and cortexin polypeptide or each of 20 encoded amino acids on the development of cell proliferation in cerebral cortex explants of the rat. The combined administration of cyclophosphamide together with cortexin or with each of the 20 encoded amino acids, except glycine, showed suppression of the cytostatic agent inhibitory effect. Thus, cortexin and amino acids have a protective effect on cell proliferation in the tissue culture of the central nervous system under the action of mustardlike substances.


Author(s):  
Yuan Feng ◽  
Xinran Liu ◽  
Yueqing Han ◽  
Mantian Chen ◽  
Lin Zhang ◽  
...  

Background & Objective: Nowadays, the interaction between natural products and microRNAs provides a promising field for exploring the chemo preventive agents for various cancers.As a member of microRNAs, the expression of let-7f-5p is universally down regulated in colorectal cancer (CRC). The present study aimed to uncover the function of let-7f-5p in the proliferation of human colon cancer cell line Caco2 and explored chemo preventive agents from natural resources that can prevent the development of CRC. Methods: Herein, Caco2 cells were transfected with let-7f-5p mimic and inhibitor to manipulate let-7f-5p levels, and the expression of let-7f-5p wasper formed by RT‑qPCR. Next, we determined how let-7f-5p regulates Caco2 cell proliferation by using MTT, wound-healing, cell cycle,and colony formation assays.Besides, to further understand the effect of let-7f-5p, we evaluated the protein level of AMER3 and SLC9A9 by using western blotting assays. Results: The results showed a suppressive function of let-7f-5p on Caco2 cell proliferation and then put forward a triterpenoid (rotundic acid, RA) which significant antagonized the effect of cell proliferation, restitution after wounding,and colony formation caused by let-7f-5p. Moreover, the western blot results further indicated that the inhibitory effect of RA might be due to its suppressive role in let-7f-5p-targeted AMER3 and SLC9A9 regulation. Conclusion: Our validation study results confirmed that let-7f-5p was a potent tumor suppressor gene of Caco2 cell proliferation,and RA showed as a regulator of the effect oflet-7f-5p on cell proliferation and then could be a potential chemo preventive agent for CRC treatment.


2021 ◽  
Vol 7 (16) ◽  
pp. eabe2635
Author(s):  
Xiaokun Wang ◽  
Liam Chung ◽  
Joshua Hooks ◽  
David R. Maestas ◽  
Andriana Lebid ◽  
...  

The avascular nature of cornea tissue limits its regenerative potential, which may lead to incomplete healing and formation of scars when damaged. Here, we applied micro- and ultrafine porcine urinary bladder matrix (UBM) particulate to promote type 2 immune responses in cornea wounds. Results demonstrated that UBM particulate substantially reduced corneal haze formation as compared to the saline-treated group. Flow cytometry and gene expression analysis showed that UBM particulate suppressed the differentiation of corneal stromal cells into α-smooth muscle actin–positive (αSMA+) myofibroblasts. UBM treatments up-regulated interleukin-4 (IL-4) produced primarily by eosinophils in the wounded corneas and CD4+ T cells in draining lymph nodes, suggesting a cross-talk between local and peripheral immunity. Gata1−/− mice lacking eosinophils did not respond to UBM treatment and had impaired wound healing. In summary, stimulating type 2 immune responses in the wounded cornea can promote proregenerative environments that lead to improved wound healing for vision restoration.


2021 ◽  
Vol 38 (2) ◽  
Author(s):  
Wenqian Zheng ◽  
Jinhui Hu ◽  
Yiming Lv ◽  
Bingjun Bai ◽  
Lina Shan ◽  
...  

AbstractThe use of the anthelmintic drug pyrvinium pamoate (PP) in cancer therapy has been extensively investigated in the last decade. PP has been shown to have an inhibitory effect in colorectal cancer (CRC), but the underlying mechanism remains elusive. We aimed to investigate the antitumor activity and mechanisms of PP in CRC. In the present study, we used CCK-8 assays, colony formation assays, and western blotting to reveal that PP effectively suppressed CRC cell proliferation and the AKT-dependent signaling pathway in a concentration-dependent and time-dependent manner. Flow cytometric analysis and fluorescence microscopy demonstrated that PP increased intracellular reactive oxygen species (ROS) accumulation. We found that the inhibitory effect of PP on cell proliferation and AKT protein expression induced by PP could be partially reversed by N-acetyl-l-cysteine (NAC), an ROS scavenger. In addition, the results also demonstrated that PP inhibited cell migration by modulating epithelial-to-mesenchymal transition (EMT)-related proteins, including E-cadherin and vimentin. In conclusion, our data suggested that PP effectively inhibited cell proliferation through the ROS-mediated AKT-dependent signaling pathway in CRC, further providing evidence for the use of PP as an antitumor agent.


2020 ◽  
Vol 98 (6) ◽  
pp. 653-660 ◽  
Author(s):  
Xiaoxing Xie ◽  
Gaoyun Xiong ◽  
Wenjun Chen ◽  
Hongdan Fu ◽  
Mingqian Li ◽  
...  

FOXD3 has been found previously to positively regulate miR-26b, a tumor inhibitor of nasopharyngeal carcinoma (NPC). However, FOXD3’s precise function and associated mechanism of action in NPC have not yet been investigated. In this study, the expression of FOXD3 mRNA and protein was evaluated using RT-qPCR, western blotting, and immunohistochemistry. Protein levels involved in the phosphoinositide 3-kinase – protein kinase B (PI3K–Akt) pathway were assessed by western blot, and cell proliferation was determined by MTT and colony forming assays. Additionally, cell apoptosis was assessed by flow cytometric assay. Finally, the migration and invasion capabilities of the NPC cells were determined using wound healing and Transwell assays. We found that FOXD3 levels were relatively low in NPC tissue and cells, while an increase caused the inhibition of the PI3K–Akt pathway. Functional experiments found that overexpression of FOXD3 suppressed cell proliferation, migration, and invasion and enhanced cell apoptosis in NPC C6661 cells. IGF-1, an activator of the PI3K–Akt pathway, reversed the inhibitory effect of FOXD3. Furthermore, we found upregulation of the PI3K–Akt pathway and upregulation of the inhibitory effects of FOXD3 on C6661 cellular activities. In conclusion, FOXD3 negatively affected the PI3K–Akt pathway to restrain the processes involved in C6661 cell pathology. These findings further exposed the function and downstream axis of FOXD3 in NPC and displayed a promising new target for NPC therapy.


1996 ◽  
Vol 134 (3) ◽  
pp. 301-307 ◽  
Author(s):  
S Diederich ◽  
M Quinkler ◽  
K Miller ◽  
P Heilmann ◽  
M Schöneshöfer ◽  
...  

Diederich S, Quinkler M, Miller K, Heilmann P, Schöneshöfer M, Oelkers W. Human kidney 11βhydroxysteroid dehydrogenase: regulation by adrenocorticotropin? Eur J Endocrinol 1996;134:301–7. ISSN 0804–4643 In ectopic adrenocorticotropin (ACTH) syndrome (EAS) with higher ACTH levels than in pituitary Cushing's syndrome and during ACTH infusion, the ratio of cortisol to cortisone in plasma and urine is increased, suggesting inhibition of renal 11β-hydroxysteroid dehydrogenase (11β-HSD) by ACTH or by ACTH-dependent steroids. Measuring the conversion of cortisol to cortisone by human kidney slices under different conditions, we tested the possibility of 11β-HSD regulation by ACTH and corticosteroids. Slices prepared from unaffected parts of kidneys removed because of renal cell carcinoma were incubated with unlabeled or labeled cortisol, and cortisol and cortisone were quantitated after HPLC separation by UV or radioactive detection. The 11β-HSD activity was not influenced by incubation with increasing concentrations (10−12–10−9 mol/l) of ACTH (1–24 or 1–39) for 1 h. Among 12 ACTH-dependent steroids tested (10−9–10−6 mol/l), only corticosterone (IC50 = 2 × 10−7 mol/l), 18-OH-corticosterone and 11βOH-androstenedione showed a significant dose-dependent inhibition of 11β-HSD activity. The percentage conversion rate of cortisol to cortisone was concentration dependent over the whole range of cortisol concentrations tested (10−8–10−5 mol/l). A direct inhibitory effect of ACTH on 11β-HSD is, therefore, unlikely. The only steroids inhibiting the conversion of cortisol to cortisone are natural substrates for 11β-HSD Kinetic studies show a saturation of the enzyme at high cortisol concentrations. Thus, the reduced percentage renal cortisol inactivation in EAS seems to be due mainly to overload of the enzyme with endogenous substrates (cortisol, corticosterone and others) rather than to direct inhibition of 11β-HSD by ACTH or ACTHdependent steroids, not being substrates of 11β-HSD. S Diederich, Department of Endocrinology, Klinikum Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, 12200 Berlin, Germany


1996 ◽  
Vol 63 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Chun W. Wong ◽  
Geoffrey O. Regester ◽  
Geoffrey L. Francis ◽  
Dennis L. Watson

SummaryStudies on the immunomodulatory activities of ruminant milk and colostral whey fractions were undertaken. By comparing with boiled colostral whey in a preliminary experiment, a putative heat-labile immunostimulatory factor for antibody responses was found to be present in ovine colostral whey. Studies were then undertaken in sheep in which the efferent prefemoral lymphatic ducts were cannulated bilaterally, and immune responses in the node were measured following subcutaneous injection in the flank fold of whey protein preparations of various purities. A significant sustained decline of efferent lymphocyte output was observed following injection with autologous crude milk whey or colostral whey preparations, but no changes were observed in interferon-gamma levels in lymph plasma. Two bovine milk whey fractions (lactoperoxidase and lactoferrin) of high purity were compared in bilaterally cannulated sheep. A transient decline over the first 6 h was seen in the efferent lymphocyte output and lymph flow rate after injection of both fractions. A significant difference was seen between the two fractions in interferongamma levels in lymph at 6 h after injection. However, no significant changes in the proportion of the various efferent lymphocyte phenotypes were seen following either treatment. Whereas both fractions showed a significant inhibitory effect in a dose-dependent manner on the proliferative response of T lymphocytes, but not B lymphocytes, to mitogenic stimulation in vitro, no similar changes were seen following in vivo stimulation with these two fractions.


2003 ◽  
Vol 197 (10) ◽  
pp. 1255-1267 ◽  
Author(s):  
Baohui Xu ◽  
Norbert Wagner ◽  
Linh Nguyen Pham ◽  
Vincent Magno ◽  
Zhongyan Shan ◽  
...  

Bronchus-associated lymphoid tissue (BALT) participates in airway immune responses. However, little is known about the lymphocyte–endothelial adhesion cascades that recruit lymphocytes from blood into BALT. We show that high endothelial venules (HEVs) in BALT express substantial levels of VCAM-1, in marked contrast to HEVs in other secondary lymphoid tissues. BALT HEVs also express the L-selectin ligand PNAd. Anti–L-selectin, anti-PNAd, and anti–LFA-1 mAbs almost completely block the homing of B and T lymphocytes into BALT, whereas anti–α4 integrin and anti–VCAM-1 mAbs inhibit homing by nearly 40%. α4β7 integrin and MAdCAM-1 are not involved. Importantly, we found that mAbs against α4 integrin and VCAM-1 significantly block the migration of total T cells (80% memory phenotype) but not naive T and B cells to BALT. These results suggest that an adhesion cascade, which includes L-selectin/PNAd, α4β1 integrin/VCAM-1, and LFA-1, targets specific lymphocyte subsets to BALT. This high level of involvement of α4β1 integrin/VCAM-1 is unique among secondary lymphoid tissues, and may help unify lymphocyte migration pathways and immune responses in BALT and other bronchopulmonary tissues.


Sign in / Sign up

Export Citation Format

Share Document