Effect of atmospheric plasma torch on ballistic woven aramid

2016 ◽  
Vol 87 (19) ◽  
pp. 2358-2367 ◽  
Author(s):  
Miguel A Martinez ◽  
Juana Abenojar ◽  
Belen Enciso ◽  
Francisco J Velasco

Atmospheric pressure plasma torch (APPT) is a cold plasma technique that can be used to treat materials with a polymeric surface in an environmentally friendly way. The treatment modifies the topography and chemistry of the surfaces. The effect of APPT on woven aramid is studied with the aim of enhancing its impact strength for ballistic applications. The shielding, laminated with several layers of woven and resin, can better resist projectile penetration. Woven aramid has low wettability due to its low polarity. Therefore adhesives penetrate the woven fibers with difficulty. APPT treatment considerably increases the polar component of the surface energy and the wettability is improved. Changes in the micro-topography and chemical composition that generate enhanced adhesion are investigated. The adhesion ability was determined by adhesion pull-off test, T-peel test, and impact test. Two types of adhesives were used: an elastic one (polyurethane-based, with elastoplastic mechanical behavior) and a rigid one (epoxy-based). Composites made with woven aramid treated with APPT exhibit an enhanced resistance to impact in terms of elastic energy recovery due to the greater degree of adhesive penetration between the woven fibers of each layer and better transfer of loads.

2021 ◽  
Vol 11 (24) ◽  
pp. 11864
Author(s):  
Adam Bennett ◽  
Takuya Urayama ◽  
Konstantinos Papangelis ◽  
Peter Yuen ◽  
Nan Yu

The safety and effectiveness of plasma devices are of crucial importance for medical applications. This study presents the novel design of an atmospheric plasma torch (SteriPlas) and its characterisation. The SteriPlas was characterised to ascertain whether it is safe for application on human skin. The emission spectrum discharged from the SteriPlas was shown to be the same as the emission from the MicroPlaSter Beta. The UV emitted from the SteriPlas was measured, and the effective irradiance was calculated. The effective irradiance enabled the determination of the maximum UV exposure limits, which were shown to be over two hours: significantly longer than the current two-minute treatment time. The use of an extraction system with a higher flow rate appears to reduce slightly the effective irradiance at the treatment area. The NOx and ozone emissions were recorded for both SteriPlas configurations. The NOx levels were shown to be orders of magnitude lower than their safety limits. The ozone emissions were shown to be safe 25 mm from the SteriPlas cage. A discussion of how safety standards differ from one regulatory body to another is given.


Author(s):  
Seoul-Hee Nam ◽  
Byul Bo Ra Choi ◽  
Gyoo-Cheon Kim

Various light sources have been applied to enhance the bleaching effect. This study was to identify the histological evaluation in oral soft tissues, as well as tooth color change after tooth bleaching by nonthermal atmospheric pressure plasma (NAPP). Nine New Zealand adult female rabbits were randomly divided into three groups (n = 3): group 1 received no treatment; group 2 was treated with NAPP and 15% carbamide peroxide (CP), which contains 5.4% H2O2, and group 3 was treated with 15% CP without NAPP. Color change (ΔE) was measured using the Shade Eye NCC colorimeter. Animals were euthanized one day later to analyze the histological responses occurring in oral soft tissues, including pulp, gingiva, tongue, buccal mucosa, and hard and soft palates. Changes in all samples were analyzed by hematoxylin and eosin staining and Masson’s trichrome. Teeth treated with plasma showed higher ΔE than that obtained with bleaching agents alone. Overall, the histological characteristics observed no appreciable changes. The combinational treatment of plasma had not indicated inflammatory responses as well as thermal damages. NAPP did not cause histological damage in oral soft tissues during tooth bleaching. We suggest that NAPP could be a novel alternative energy source to conventional light sources for tooth bleaching.


2021 ◽  
Vol 11 (6) ◽  
pp. 2534
Author(s):  
Henrike Rebl ◽  
Claudia Bergemann ◽  
Sebastian Rakers ◽  
Barbara Nebe ◽  
Alexander Rebl

The present study provides the fundamental results for the treatment of marine organisms with cold atmospheric pressure plasma. In farmed fish, skin lesions may occur as a result of intensive fish farming. Cold atmospheric plasma offers promising medical potential in wound healing processes. Since the underlying plasma-mediated mechanisms at the physical and cellular level are yet to be fully understood, we investigated the sensitivity of three fish cell lines to plasma treatment in comparison with mammalian cells. We varied (I) cell density, (II) culture medium, and (III) pyruvate concentration in the medium as experimental parameters. Depending on the experimental setup, the plasma treatment affected the viability of the different cell lines to varying degrees. We conclude that it is mandatory to use similar cell densities and an identical medium, or at least a medium with identical antioxidant capacity, when studying plasma effects on different cell lines. Altogether, fish cells showed a higher sensitivity towards plasma treatment than mammalian cells in most of our setups. These results should increase the understanding of the future treatment of fish.


2017 ◽  
Vol 56 (39) ◽  
pp. 11352-11358 ◽  
Author(s):  
Wameath S. Abdul-Majeed ◽  
Ibtisam M. AL-Handhali ◽  
Shima H. AL-Yaquobi ◽  
Khamis O. Al-Riyami

2014 ◽  
Vol 239 ◽  
pp. 70-77 ◽  
Author(s):  
J. Abenojar ◽  
M.A. Martínez ◽  
F. Velasco ◽  
M.A. Rodríguez-Pérez

2018 ◽  
Vol 13 (3) ◽  
pp. 155892501801300
Author(s):  
Carrie Cornelius ◽  
Marian McCord ◽  
Mohamed Bourham ◽  
Peter Hauser

Nonwoven polypropylene and cotton fabrics are grafted to a vinyl quaternary compound using atmospheric-pressure plasma. Two different atmospheric plasma devices are used -the NCAPS (North Carolina Atmospheric Plasma System), a dielectric barrier discharge device created by North Carolina State University, and a plasma device from APJeT® Inc. The addition of additives such as Mohr's salt, potassium persulfate, and diacrylates are assessed to see if graft yield can be increased. Acid dye tests, SEM, and XPS reveal successful grafting of the vinyl quaternary compound. A combination of all four additives is found to yield the highest graft yields and greatest uniformity.


2014 ◽  
Vol 91 (12) ◽  
pp. 937-949 ◽  
Author(s):  
M. A. Martinez ◽  
F. Velasco ◽  
J. Abenojar ◽  
A. Chiminelli ◽  
R. Breto

Coatings ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 190 ◽  
Author(s):  
Yichao Jin ◽  
Chaoliang Wang ◽  
Nana Yuan ◽  
Ke Ding ◽  
Yu Xu ◽  
...  

For the ever-increasing demand for highly safe lithium-ion batteries (LIBs), the common sol-gel process provides heat-resistance to separators with an inorganic coating, where the adhesion to the separator is the key to safety and stability. In this paper, we present a SiO2.01C0.23Hx-coated polyethylene (PE) separator through a roll-to-roll atmospheric plasma-enhanced chemical vapor deposition (R2R-APECVD) of hexamethyldisiloxane (HMDSO)/Ar/O2. The adhesion strength of SiO2.01C0.23Hx-coated PE was tested by peel-off test and found to be higher than that of the commercial Al2O3-coated separator (0.28 N/mm vs. 0.06 N/mm). Furthermore, the SiO2.01C0.23Hx-coated PE separator showed better electrochemical performance in C-rate and long term cycle tests. FTIR, SEM, and XPS analysis indicate that the increased adhesion and electrochemical performance are attributed to the inner hybrid SiO2.01C0.23Hx coating with organic and inorganic components.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
K. A. Vijayalakshmi ◽  
M. Mekala ◽  
C. P. Yoganand ◽  
K. Navaneetha Pandiyaraj

The polycarbonate film (PC) surface was treated using glow discharge low-pressure air plasma. The modified surface was characterized by contact angle, FTIR, XRD, AFM, and XPS analysis. The surface-modified samples were further investigated using T-peel test for technical applications. The surface energy of the sample was estimated by measuring contact angle. The results show that, after plasma treatment, the root mean square (RMS) roughness of PC film was gradually increased with exposure time. Plasma treatment modified the chemical composition of the polymer surface and it made the surface to be highly hydrophilic. It was found that the air plasma treatment increases the polar component of PC film.


Sign in / Sign up

Export Citation Format

Share Document