Numerical and experimental study on the joint forming mechanism in the pneumatic splicing process

2019 ◽  
Vol 89 (21-22) ◽  
pp. 4512-4525
Author(s):  
Yingjie Zhou ◽  
Zhenyu Wu ◽  
Yisheng Liu ◽  
Zhong Xiang ◽  
Xudong Hu

This study presents an investigation on the joint forming mechanism of pneumatic splicing by numerical and experimental methods. A one-way coupling numerical model concerning interaction between fluid and filaments was established to simulate the complex motion of a flexible body in a spiral flow field. The airflow field in the splicing chamber, which contributes to longitudinal and normal aerodynamic force along a filament regarded as a digital chain composed of a series of interconnected rods, was obtained by a two-equation turbulent computational fluid dynamics model. Contact-friction behavior within filaments was also taken into consideration. An iterative algorithm was adopted to update the displacement of filaments and the corresponding aerodynamic force. A high-speed visualization test bench was built to record the sequence motion of filaments in the splicing process. The splicing mechanism within flexible filaments was identified by comparison between the experimental data and numerical results. The filament portion located in the homolateral rotating channel with respect to orifice is blown to bent by the jet airflow. It contributes to a frontal area in the axial airflow direction, causing the filament to be retracted toward its fixed end. Meanwhile, the portion in the contralateral rotating channel tries to wrap around the opposite filaments due to the spiral airflow. The interaction between filaments generates the contact force and related friction force, which commonly resists the retracting force exerted on the homolateral filament portion. The competition between the two forces determines whether the joint can be formed. Furthermore, the influence of the overlapping length on splicing behavior was discussed.

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 719
Author(s):  
Ying Yang ◽  
Yongchun Zeng

In the melt-blowing process, micro/nanofibrous nonwovens are attenuated and formed through aerodynamic force in a turbulent airflow field. In this work, two types of airflow-directors were added under a common melt-blowing slot-die nozzle to obtain modified airflow fields. The effect of airflow-directors on time-averaged characteristics, turbulence intensity, and temperature fluctuation intensity are achieved through the simultaneous measurement of fluctuating velocity and fluctuating temperature using a two-wire probe hot-wire anemometer. Moreover, the influence of airflow-directors on fibre oscillations are also investigated through high-speed photography. The distribution of turbulence intensity and temperature fluctuation intensity reveals the characteristics of fluctuating airflow fields formed by different melt-blowing slot-die nozzles. Through the analyses of airflow characteristics and fibre oscillations, we can find that the arrangement of airflow-directors has a great impact on both turbulence distribution and fibre oscillation.


2021 ◽  
pp. 004051752110018
Author(s):  
Rui Hua Yang ◽  
Chuang He ◽  
Bo Pan ◽  
Hongxiu Zhong ◽  
Cundong Xu

The task of the fiber transport channel (FTC) is to transport the fibers from the carding roller to the rotor. Its geometric position in the spinning machine has a strong influence on the characteristics of the airflow field and the trajectory of the fiber motion in both the rotor and the FTC. In this paper, a three-dimensional pumping rotor spinning channel model was established using ANSYS-ICEM-CFD software with three different positions of the FTC (positions a–c). Further, the simulations of air distribution were performed using Fluent software. In addition, the discrete phase model was used to fit the fiber motion trajectory in the rotor. The simulation results showed that among the three types of FTC, position b is the optimal condition. The gradients of airflow velocity in the channel at position b were greater than those of the other two positions, which is conducive to straightening of the fiber.


2014 ◽  
Vol 488-489 ◽  
pp. 886-891
Author(s):  
Ai Jian Zheng ◽  
Feng Niu ◽  
Hai Jiang Zhu

This paper presents two nose cones models and their numerical calculation of aerodynamic noise in high speed airflow field combining the analysis theory of fluid dynamics with the acoustic boundary element analysis method. The noise sound pressure levels (SPL) of these two models are calculated under the different speed airflow. And we compare the SPL of the better model with that of commercial nose cone models. These simulated results show that the aerodynamic noise of the nose cone with a ellipsoid head has lower flow-induced noise than that of commercial nose cone models at relative high air flow velocities at most frequencies.


Author(s):  
Yi Zhang ◽  
Ka Chung Chan ◽  
Sau Chung Fu ◽  
Christopher Yu Hang Chao

Abstract Flutter-driven triboelectric nanogenerator (FTENG) is one of the most promising methods to harvest small-scale wind energy. Wind causes self-fluttering motion of a flag in the FTENG to generate electricity by contact electrification. A lot of studies have been conducted to enhance the energy output by increasing the surface charge density of the flag, but only a few researches tried to increase the converting efficiency by enlarging the flapping motion. In this study, we show that by simply replacing the rigid flagpole in the FTENG with a flexible flagpole, the energy conversion efficiency is augmented and the energy output is enhanced. It is found that when the flag flutters, the flagpole also undergoes aerodynamic force. The lift force generated from the fluttering flag applies a periodic rotational moment on the flagpole, and causes the flagpole to vibrate. The vibration of the flagpole, in turn amplifies the flutter of the flag. Both the fluttering dynamics of the flags with rigid and flexible flagpoles have been recorded by a high-speed camera. When the flag was held by a flexible flagpole, the fluttering amplitude and the contact area between the flag and electrode plates were increased. The energy enhancement increased as the flow velocity increased and the enhancement can be 113 times when the wind velocity is 10 m/s. The thickness of the flagpole was investigated. An optimal output of open-circuit voltage reaching 1128 V (peak-to-peak value) or 312.40 V (RMS value), and short-circuit current reaching 127.67 μA (peak-to-peak value) or 31.99 μA (RMS value) at 12.21 m/s flow velocity was achieved. This research presents a simple design to enhance the output performance of an FTENG by amplifying the fluttering amplitude. Based on the performance obtained in this study, the improved FTENG has the potential to apply in a smart city for driving electronic devices as a power source for IoT applications.


2020 ◽  
Vol 72 (7) ◽  
pp. 969-976
Author(s):  
Yanbin Liu ◽  
Zhanli Zhang

Purpose This study aims to uncover the influencing mechanism of the tilt angles of the cage pocket walls of the high-speed cylindrical roller bearing on the bearing skidding. Design/methodology/approach A novel cylindrical roller bearing with the beveled cage pockets was proposed. Using the Hertz contact theory and the elastohydrodynamic and hydrodynamic lubrication formulas, the contact models of the bearing were built. Using the multibody kinematics and the Newton–Euler dynamics theory, a dynamics model of the bearing was established. Using the Runge–Kutta integration method, the dynamics simulations and analysis of the bearing were performed. Findings The simulation results show that the effects of the tilt angles of the front and rear walls of the pocket on the bearing skidding are remarkable. Under a 5° tilt angle of the front wall of the pocket and a 10° tilt angle of the rear wall, the bearing skidding can be effectively decreased in the rotational speed range of 10,000-70,000 r/min. Originality/value In this paper, a novel cylindrical roller bearing with the beveled cage pockets was proposed; a dynamics model of the bearing was established; the influence mechanism of the tilt angles of the front and rear walls of the pocket on the bearing skidding was investigated, which can provide fundamental theory basis for optimizing the pocket. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0035/


Author(s):  
Dilong Guo ◽  
Wen Liu ◽  
Junhao Song ◽  
Ye Zhang ◽  
Guowei Yang

The aerodynamic force acting on the pantograph by the airflow is obviously unsteady and has a certain vibration frequency and amplitude, while the high-speed train passes through the tunnel. In addition to the unsteady behavior in the open-air operation, the compressive and expansion waves in the tunnel will be generated due to the influence of the blocking ratio. The propagation of the compression and expansion waves in the tunnel will affect the pantograph pressure distribution and cause the pantograph stress state to change significantly, which affects the current characteristics of the pantograph. In this paper, the aerodynamic force of the pantograph is studied with the method of the IDDES combined with overset grid technique when high speed train passes through the tunnel. The results show that the aerodynamic force of the pantograph is subjected to violent oscillations when the pantograph passes through the tunnel, especially at the entrance of the tunnel, the exit of the tunnel and the expansion wave passing through the pantograph. The changes of the pantograph aerodynamic force can reach a maximum amplitude of 106%. When high-speed trains pass through tunnels at different speeds, the aerodynamic coefficients of the pantographs are roughly the same.


2019 ◽  
Vol 137 ◽  
pp. 386-403 ◽  
Author(s):  
Zhiwei Wang ◽  
Guiming Mei ◽  
Qing Xiong ◽  
Zhonghui Yin ◽  
Weihua Zhang

2011 ◽  
Vol 9 (71) ◽  
pp. 1194-1207 ◽  
Author(s):  
Simon M. Walker ◽  
Adrian L. R. Thomas ◽  
Graham K. Taylor

The alula is a hinged flap found at the base of the wings of most brachyceran Diptera. The alula accounts for up to 10 per cent of the total wing area in hoverflies (Syrphidae), and its hinged arrangement allows the wings to be swept back over the thorax and abdomen at rest. The alula is actuated via the third axillary sclerite, which is a component of the wing hinge that is involved in wing retraction and control. The third axillary sclerite has also been implicated in the gear change mechanism of flies. This mechanism allows rapid switching between different modes of wing kinematics, by imposing or removing contact with a mechanical stop limiting movement of the wing during the lower half of the downstroke. The alula operates in two distinct states during flight—flipped or flat—and we hypothesize that its state indicates switching between different flight modes. We used high-speed digital video of free-flying hoverflies ( Eristalis tenax and Eristalis pertinax ) to investigate whether flipping of the alula was associated with changes in wing and body kinematics. We found that alula state was associated with different distributions of multiple wing kinematic parameters, including stroke amplitude, stroke deviation angle, downstroke angle of incidence and timing of supination. Changes in all of these parameters have previously been linked to gear change in flies. Symmetric flipping of the alulae was associated with changes in the symmetric linear acceleration of the body, while asymmetric flipping of the alulae was associated with asymmetric angular acceleration of the body. We conclude that the wings produce less aerodynamic force when the alula is flipped, largely as a result of the accompanying changes in wing kinematics. The alula changes state at mid-downstroke, which is the point at which the gear change mechanism is known to come into effect. This transition is accompanied by changes in the other wing kinematic parameters. We therefore find that the state of the alula is linked to the same parameters as are affected by the gear change mechanism. We conclude that the state of the alula does indeed indicate the operation of different flight modes in Eristalis , and infer that a likely mechanism for these changes in flight mode is the gear change mechanism.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Juan Wang ◽  
Xiongrong Huang ◽  
Wei Wang ◽  
Haosheng Han ◽  
Hongyu Duan ◽  
...  

Purpose The purpose of this study is to determine the tribological behavior and wear mechanism of a polytetrafluoroethylene (PTFE)/polyester (PET) fabric composite for application as a self-lubricating liner suitable for high-speed and low-load friction conditions. Design/methodology/approach The effects of different loads and sliding speeds on the friction coefficients and wear characteristics of the composite were studied using reciprocating friction tests. Scanning electron microscopy, extended depth-of-field microscopy, and energy-dispersive X-ray spectrometry was used to analyze the worn surface morphology, wear depth and elemental content of the lubrication films, respectively. Findings The friction coefficient curves of the composites presented a long-term steady wear stage under different sliding conditions. With increasing sliding speed, the friction coefficient and wear depth of the composite slowly increased. The film-forming mechanism of the composite revealed that the PTFE/PET ply yarn on the composite surface formed complete PTFE lubrication films at the initial sliding stage. Originality/value The PTFE/PET fabric composite maintained good friction stability and high-speed adaptability, which demonstrates that the composite has broad application prospects as a highly reliable self-lubricating bearing liner with a long lifespan.


2021 ◽  
Author(s):  
Takao Suzuki ◽  
Michael Shur ◽  
Michael Strelets ◽  
Andrey Travin

Sign in / Sign up

Export Citation Format

Share Document