PD-1, PD-L1, and PD-L2 Gene Expression and Tumor Infiltrating Lymphocytes in Canine Melanoma

2021 ◽  
pp. 030098582110119
Author(s):  
Valentina B. Stevenson ◽  
Samantha N. Perry ◽  
Michelle Todd ◽  
William R. Huckle ◽  
Tanya LeRoith

Melanoma in humans and dogs is considered highly immunogenic; however, the function of tumor-infiltrating lymphocytes (TILs) is often suppressed in the tumor microenvironment. In humans, current immunotherapies target checkpoint molecules (such as PD-L1, expressed by tumor cells), inhibiting their suppressive effect over TILs. The role of PD-L2, an alternative PD-1 ligand also overexpressed in malignant tumors and in patients with anti-PD-L1 resistance, remains poorly understood. In the current study, we evaluated the expression of checkpoint molecule mRNAs in canine melanoma and TILs. Analysis of checkpoint molecule gene expression was performed by RT-qPCR (real-time quantitative polymerase chain reaction) using total RNA isolated from formalin-fixed and paraffin-embedded melanomas ( n = 22) and melanocytomas ( n = 9) from the Virginia Tech Animal Laboratory Services archives. Analysis of checkpoint molecule expression revealed significantly higher levels of PDCD1 ( PD-1) and CD274 ( PD-L1) mRNAs and an upward trend in PDCD1LG2 ( PD-L2) mRNA in melanomas relative to melanocytomas. Immunohistochemistry revealed markedly increased numbers of CD3+ T cells in the highest PD-1-expressing subgroup of melanomas compared to the lowest PD-1 expressors, whereas densities of IBA1+ cells (macrophages) were similar in both groups. CD79a+ cell numbers were low for both groups. As in human melanoma, overexpression of the PD-1/PD-L1/PD-L2 axis is a common feature of canine melanoma. High expression of PD-1 and PD-L1 correlates with increased numbers of CD3+ cells. Additionally, the high level of IBA1+ cells in melanomas with low PD-1 expression and low CD3+ cells levels suggest that the expression of checkpoint molecules is modulated by interactions between T cells and cancer cells rather than histiocytes.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 2587-2587
Author(s):  
Ruiqi Liu ◽  
Yanling Niu ◽  
Xin Zhang ◽  
Tonghui Ma

2587 Background: Dysregulation of HMTs plays an important role in tumorigenesis. KMT2C and KMT2D are enzymatically active scaffold proteins that form the core of mammalian COMPASS complexes, which methylate the histone 3 lysine 4. Both KMT2C and KMT2D are involved in the regulation of gene expression. Therefore, we explored the associations of KMT2C/D loss-of-function (LOF) mutations with the expression of immune-related genes, the levels of tumor infiltrating lymphocytes (TILs), and response to immune checkpoint inhibitors (ICIs). Methods: KMT2C/D LOF mutations were defined as nonsense, frameshift, splice site variants within consensus regions, start lost, and stop lost/gained variants. An ICIs treatment cohort from the MSKCC was used for exploring the associations between KMT2C/D LOF mutations and ICIs efficacy. The RNA-Seq data obtained from the TCGA cohort was used for analysis of gene expression and the levels of TILs using CIBERSORT. Results: In MSKCC pan-cancer dataset, patients with KMT2C/D LOF mutations had a relatively longer median overall survival (OS) compared to those with non-LOF mutations, although the result did not reach statistical significance (P = 0.0832). Then we analyzed the predictive roles of KMT2C/D LOF mutations for each cancer type. The results showed that the predictive role of KMT2C/D LOF mutations for the clinical efficacy of ICIs therapy was only observed in colorectal cancer (P = 0.045). However, we did not find the associations of KMT2C/D LOF mutations with ICIs efficacy in bladder cancer, breast cancer, melanoma, glioma, head and neck cancer, renal cell carcinoma, NSCLC, and esophagogastric cancer. Consistently, analysis of TILs in colorectal cancer revealed that KMT2C/D LOF was associated with increased infiltration of several types of immune cells, such as CD8+ T cells (P = 0.0001), activated NK cells (P = 0.0001), M1 macrophage (P = 0.0005), M2 macrophage (P = 0.0115), and neutrophils (P = 0.0209). Meanwhile, regulatory T cells (Tregs) (P = 0.0048) and M0 macrophage (P = 0.0043) were dramatically decreased in KMT2C/D LOF group for colorectal cancer. Moreover, there were no significant relationships between KMT2C/D LOF and the levels of TILs in other cancer types. Our data also demonstrated that KMT2C and KMT2D could regulate the expression of more than 30 immune-related genes in colorectal cancer. Conclusions: Our data indicated that KMT2C/D LOF mutations were significantly correlated with better outcomes of ICIs therapy in colorectal cancer, suggesting it can be as a useful predictor for response to ICIs in colorectal cancer. Meanwhile, we found the associations of KMT2C/D LOF with the levels of TILs in colorectal cancer, but not in other cancer types, indicating that the efficacy of ICIs was consistent with the levels of TILs.


2017 ◽  
Vol 114 (13) ◽  
pp. E2776-E2785 ◽  
Author(s):  
Giuliana P. Mognol ◽  
Roberto Spreafico ◽  
Victor Wong ◽  
James P. Scott-Browne ◽  
Susan Togher ◽  
...  

T-cell exhaustion is a progressive loss of effector function and memory potential due to persistent antigen exposure, which occurs in chronic viral infections and cancer. Here we investigate the relation between gene expression and chromatin accessibility in CD8+ tumor-infiltrating lymphocytes (TILs) that recognize a model tumor antigen and have features of both activation and functional exhaustion. By filtering out accessible regions observed in bystander, nonexhausted TILs and in acutely restimulated CD8+ T cells, we define a pattern of chromatin accessibility specific for T-cell exhaustion, characterized by enrichment for consensus binding motifs for Nr4a and NFAT transcription factors. Anti–PD-L1 treatment of tumor-bearing mice results in cessation of tumor growth and partial rescue of cytokine production by the dysfunctional TILs, with only limited changes in gene expression and chromatin accessibility. Our studies provide a valuable resource for the molecular understanding of T-cell exhaustion in cancer and other inflammatory settings.


2015 ◽  
Vol 37 (4) ◽  
pp. 1560-1571 ◽  
Author(s):  
Yiting Geng ◽  
Yingjie Shao ◽  
Wenting He ◽  
Wenwei Hu ◽  
Yanjie Xu ◽  
...  

Background/Aims: The role of Tumor-infiltrating lymphocytes (TILs) in the prognosis of patients with lung cancer is still controversial. We performed a meta-analysis to evaluate the prognostic role of TILs in lung cancer. Methods: Studies were recruited by searching PubMed, Embase and the Cochrane Library and assessed by further quality evaluation. The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated to investigate the association between TIL subsets and lung cancer patients' outcome. Results: A total of 29 articles including 8,600 patients were enrolled into the meta-analysis. Our results indicated that high level of CD8+ cells infiltration in tumor stroma (TS) or tumor nest (TN) was associated with better OS in lung cancer patients (HR = 0.76, 95% CI 0.62-0.93, P = 0.006; HR = 0.80, 95% CI 0.67-0.96; P = 0.018, respectively). Similar results could be also observed in CD3+ T cells infiltration. High CD4+ T lymphocytes infiltration in TS was explicitly accompanied by better OS (HR = 0.65, 95% CI 0.46-0.91; P = 0.013), rather than in TN. In contrast, high density of FOXP3+ T cells infiltration in TS showed a poor PFS (HR = 2.67, 95% CI, 1.74-4.08, P < 0.001). Conclusion: This meta-analysis clarified that high level of CD8+ and CD3+ T cells infiltration in TS or TN, and high CD4+ T lymphocytes infiltration in TS showed better OS in lung cancer patients, whereas high density of FOXP3+ T cells infiltration in TS could be recognized as a negative prognostic factor.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A822-A822
Author(s):  
Sri Krishna ◽  
Frank Lowery ◽  
Amy Copeland ◽  
Stephanie Goff ◽  
Grégoire Altan-Bonnet ◽  
...  

BackgroundAdoptive T cell therapy (ACT) utilizing ex vivo-expanded autologous tumor infiltrating lymphocytes (TILs) can result in complete regression of human cancers.1 Successful immunotherapy is influenced by several tumor-intrinsic factors.2 3 Recently, T cell-intrinsic factors have been associated with immunotherapy response in murine and human studies.4 5 Analyses of tumor-reactive TILs have concluded that anti-tumor neoantigen-specific TILs are enriched in subsets defined by the expression of PD-1 or CD39.6 7 Thus, there is a lack of consensus regarding the tumor-reactive TIL subset that is directly responsible for successful immunotherapies such as ICB and ACT. In this study, we attempted to define the fitness landscape of TIL-enriched infusion products to specifically understand its phenotypic impact on human immunotherapy responses.MethodsWe compared the phenotypic differences that could distinguish bulk ACT infusion products (I.P.) administered to patients who had complete response to therapy (complete responders, CRs, N = 24) from those whose disease progressed following ACT (non-responders, NRs, N = 30) by high dimensional single cell protein and RNA analysis of the I.P. We further analyzed the phenotypic states of anti-tumor neoantigen specific TILs from patient I.P (N = 26) by flow cytometry and single cell transcriptomics.ResultsWe identified two CD8+ TIL populations associated with clinical outcomes: a memory-progenitor CD39-negative stem-like TIL (CD39-CD69-) in the I.P. associated with complete cancer regression (overall survival, P < 0.0001, HR = 0.217, 95% CI 0.101 to 0.463) and TIL persistence, and a terminally differentiated CD39-positive TIL (CD39+CD69+) population associated with poor TIL persistence post-treatment. Although the majority (>65%) of neoantigen-reactive TILs in both responders and non-responders to ACT were found in the differentiated CD39+ state, CR infusion products also contained a pool of CD39- stem-like neoantigen-specific TILs (median = 8.8%) that was lacking in NR infusion products (median = 23.6%, P = 1.86 x 10-5). Tumor-reactive stem-like T cells were capable of self-renewal, expansion, and persistence, and mediated superior anti-tumor response in vivo.ConclusionsOur results support the hypothesis that responders to ACT received infusion products containing a pool of stem-like neoantigen-specific TILs that are able to undergo prolific expansion, give rise to differentiated subsets, and mediate long-term tumor control and T cell persistence, in line with recent murine ICB studies mediated by TCF+ progenitor T cells.4 5 Our data also suggest that TIL subsets mediating ACT-response (stem-like CD39-) might be distinct from TIL subsets enriched for anti-tumor-reactivity (terminally differentiated CD39+) in human TIL.6 7AcknowledgementsWe thank Don White for curating the melanoma patient cohort, and J. Panopoulos (Flowjo) for helpful discussions on high-dimensional analysis, and NCI Surgery Branch members for helpful insights and suggestions. S. Krishna acknowledges funding support from NCI Director’s Innovation Award from the National Cancer Institute.Trial RegistrationNAEthics ApprovalThe study was approved by NCI’s IRB ethics board.ReferencesGoff SL, et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol 2016;34:2389–2397.Snyder A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014;371:2189–2199.McGranahan N, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016;351:1463–1469.Sade-Feldman M, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 2019;176:404.Miller BC, et al. Subsets of exhausted CD8 T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol 2019;20:326–336.Simoni Y, et al. Bystander CD8 T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018;557:575–579.Gros A, et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Invest 2014;124:2246–2259.


Author(s):  
H. Kuroda ◽  
T. Jamiyan ◽  
R. Yamaguchi ◽  
A. Kakumoto ◽  
A. Abe ◽  
...  

Abstract Purpose Immune cells such as cytotoxic T cells, helper T cells, B cells or tumor-associated macrophages (TAMs) contribute to the anti-tumor response or pro-tumorigenic effect in triple negative breast cancer (TNBC). The interrelation of TAMs, T and B tumor-infiltrating lymphocytes (TILs) in TNBC has not been fully elucidated. Methods We evaluated the association of tumor-associated macrophages, T and B TILs in TNBC. Results TNBCs with a high CD68+, CD163+ TAMs and low CD4+, CD8+, CD20+ TILs had a significantly shorter relapse-free survival (RFS) and overall survival (OS) than those with low CD68+, CD163+ TAMs and high CD4+, CD8+, CD20+ TILs. TNBCs with high CD68+ TAMs/low CD8+ TILs showed a significantly shorter RFS and OS and a significantly poorer prognosis than those with high CD68+ TAMs/high CD8+ TILs, low CD68+ TAMs/high CD8+ TILs, and low CD68+/low CD8+. TNBCs with high CD163+ TAMs/low CD8+, low CD20 + TILs showed a significantly shorter RFS and OS and a significantly poorer prognosis than those with high CD163+ TAMs/high CD8+ TILs and high CD163+ TAMs /high CD20+ TILs. Conclusions Our study suggests that TAMs further create an optimal tumor microenvironment (TME) for growth and invasion of cancer cells when evasion of immunoreactions due to T and B TILs occurs. In TNBCs, all these events combine to affect prognosis. The process of TME is highly complex in TNBCs and for an improved understanding, larger validation studies are necessary to confirm these findings.


2006 ◽  
Vol 119 (4) ◽  
pp. 831-838 ◽  
Author(s):  
Sine Reker Hadrup ◽  
Otto Brændstrup ◽  
Grete Krag Jacobsen ◽  
Svend Mortensen ◽  
Lars Østergaard Pedersen ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Danian Dai ◽  
Lili Liu ◽  
He Huang ◽  
Shangqiu Chen ◽  
Bo Chen ◽  
...  

BackgroundTumor-infiltrating lymphocytes (TILs) have important roles in predicting tumor therapeutic responses and progression, however, the method of evaluating TILs is complicated. We attempted to explore the association of TILs with clinicopathological characteristics and blood indicators, and to develop nomograms to predict the density of TILs in patients with high-grade serous ovarian cancer (HGSOC).MethodsThe clinical profiles of 197 consecutive postoperative HGSOC patients were retrospectively analyzed. Tumor tissues and matched normal fallopian tubes were immunostained for CD3+, CD8+, and CD4+ T cells on corresponding tissue microarrays and the numbers of TILs were counted using the NIH ImageJ software. The patients were classified into low- or high-density groups for each marker (CD3, CD4, CD8). The associations of the investigated TILs to clinicopathological characteristics and blood indicators were assessed and the related predictors for densities of TILs were used to develop nomograms; which were then further evaluated using the C-index, receiver operating characteristic (ROC) curves and calibration plots.ResultsMenopausal status, estrogen receptor (ER), Ki-67 index, white blood cell (WBC), platelets (PLT), lactate dehydrogenase (LDH), and carbohydrate antigen 153 (CA153) had significant association with densities of tumor-infiltrating CD3+, CD8+, or CD4+ T cells. The calibration curves of the CD3+ (C-index = 0.748), CD8+ (C-index = 0.683) and CD4+ TILs nomogram (C-index = 0.759) demonstrated excellent agreement between predictions and actual observations. ROC curves of internal validation indicated good discrimination for the CD8+ TILs nomogram [area under the curve (AUC) = 0.659, 95% CI 0.582–0.736] and encouraging performance for the CD3+ (AUC= 0.708, 95% CI 0.636–0.781) and CD4+ TILs nomogram (AUC = 0.730, 95% CI 0.659–0.801).ConclusionMenopausal status, ER, Ki-67 index, WBC, PLT, LDH, and CA153 could reflect the densities of T cells in the tumor microenvironment. Novel nomograms are conducive to monitor the immune status of patients with HGSOC and help doctors to formulate the appropriate treatment strategies.


2006 ◽  
Vol 105 (3) ◽  
pp. 430-437 ◽  
Author(s):  
Abdeljabar El Andaloussi ◽  
Yu Han ◽  
Maciej S. Lesniak

Object Regulatory CD4+CD25+ T cells have been shown to play an important role in the regulation of the immune response. Whereas the presence of these cells has been associated with immune suppression, the lack of regulatory T (Treg) cells has been shown to induce autoimmunity. The purpose of this study was to define the role of Treg cells in tumors of the central nervous system (CNS). Methods The authors implanted syngeneic GL261 tumor cells in the brains or flanks of C57BL/6 mice. The resulting tumors were later removed at specific time points, and the presence of tumor-infiltrating lymphocytes was analyzed by performing flow cytometry for the presence of Treg cells. In a separate experiment, mice with GL261 tumors were treated with injections of anti-CD25 monoclonal antibody (mAb) to determine whether depletion of Treg cells may have an impact on the length of survival in mice with brain tumors. Tumor-infiltrating lymphocytes isolated from mice with GL261 tumors were found to have a significant increase in the presence of Treg cells compared with control lymphocytes (p < 0.05). Moreover, Treg cells isolated in murine brain tumors expressed FoxP3, CTLA-4, and CD62L. Mice treated with anti-CD25 mAb lived significantly longer than tumor-bearing control animals (p < 0.05). An analysis of brains in surviving animals showed a depletion of CD4+CD25+ T cells. Conclusions The results of this study indicate that CD4+CD25+ Treg cells play an important role in suppressing the immune response to CNS tumors. These Treg cells may therefore represent a potentially novel target for immunotherapy of malignant gliomas.


2021 ◽  
Author(s):  
Hongjuan Niu ◽  
Peiqiong Chen ◽  
Lu Fan ◽  
Boyu Sun

Abstract Background: Increased evidence supports the relationship between chromobox protein homolog 3 (CBX3) and tumorigenesis of some cancers. However, the role of CBX3 in pan-cancers remains poorly defined. In the research, we aimed to investigate the prognostic value and the immunological functions of CBX3. Results: We explored the potential oncogenic roles of CBX3 in mRNA and protein levels based on the diverse databases, including the expression, the correlation with prognosis, tumor microenvironment (TME), DNA methylation, protein phosphorylation and enrichment analysis across all TCGA tumors. The results show that CBX3 is overexpressed in multiple cancers, and significant correlations exist between high expression and adverse prognosis in most tumor patients. We observed an enhanced phosphorylation level in uterine corpus endometrial carcinoma, colon cancer and lung adenocarcinoma. A distinct relationship was also found between CBX3 expression and TME, including immune infiltration of tumor-infiltrating lymphocytes (TILs) and cancer-associated fibroblasts (CAFs), immune score or matrix score, immune checkpoints. The correlative transcription factors and miRNAs of CBX3-binding hub genes were analyzed to investigate the molecular mechanism. Moreover, alcoholism and alteration of DNA cellular biology may be involved in the functional mechanisms of CBX3. Conclusion: The first pan-cancer study offers a relatively comprehensive cognition on the oncogenic roles of CBX3 as a prognostic and immunological marker in various malignant tumors.


Sign in / Sign up

Export Citation Format

Share Document