Development of Deflection Prediction Model for Interlocking Concrete Block Pavements

Author(s):  
R. T. Arjun Siva Rathan ◽  
V. Sunitha

Interlocking concrete block pavement (ICBP) is one of the pavement types adopted worldwide, as it is economical and exhibits improved structural performance. The primary objective of the present study was to develop a deflection prediction model for ICBP considering the most influential parameters using the plate load test. The finite element method (FEM) based software PLAXIS was also employed to predict the plate load deflection to reduce laboratory cost and time. Statistical analysis was carried out to assure the identical deflection values between the laboratory plate load test and FEM analysis. Sensitivity analysis was performed to finalize the most significant parameters for developing the deflection prediction model using the Design Expert software. Two deflection models were predicted for zigzag shape blocks with two laying patterns: stretcher and herringbone. The model was developed in SPSS software by performing 1,680 trial experiments. The results from ANOVA statistical analysis proved that the developed model possessed a significant fit for a 95% confidence level. The predicted deflection model was validated using field deflection measurements obtained from four different roads using Benkelman beam deflection (BBD) and light weight deflectometer (LWD). Statistical two-tailed test results proved that the predicted deflection model was compatible with the observed field deflection value.

2020 ◽  
Vol 10 (10) ◽  
pp. 3576
Author(s):  
Eui-Seok Han ◽  
Junho Gong ◽  
Hoseong Jeong ◽  
Dooyong Cho

Bonded natural stone pavement has been typically used in historical neighborhoods to satisfy functional and architectural aesthetic standards. Despite its advantages, it has been barely applied to places for heavy traffic volume or high travelling speed because of various structural failures in joints and bedding courses. Ultra-rapid-hardening mortar for natural stone pavement was considered as an alternative to minimize these failures. The objective of this study is to develop bound stone pavement using the ultra-rapid-hardening mortar for high traffic volume and evaluate throughout by carrying out material tests, plate load test, accelerated pavement test (APT), and falling weight deflectometer (FWD) test. For the tests, four types of pavements, asphalt, concrete block, and two bound stone pavements, were produced in a testing facility. The bearing capacity of the sub-base course, which was asphalt and concrete, showed values 1.62 and 2.64 times higher than deemed satisfactory. Additionally, rut depth was measured using a transverse profile logger during the APT test and the test was terminated at 1.97 million cumulative equivalent single axle loads (ESALs). In the rut depth measurements, the deepest deflection (16.0 mm) was made in the asphalt pavement and the depth of the concrete block pavement was 4.5 mm. Vertical displacements of 3.0 and 1.5 mm were obtained in stone pavements A and B, respectively. The maximum pavement vertical deflection response was recorded at 0, 0.4, and 1.97 million ESALs. The response results revealed that they were influenced by the material types of either bedding or sub-base courses. With these outcomes, it would be possible to apply the baseline data for designing rigid small element pavement for heavy traffic volume or high travelling speed roads.


2020 ◽  
Vol 2 (1) ◽  
pp. 18-28
Author(s):  
Junhui Zhang ◽  
Le Ding ◽  
Ling Zeng ◽  
Qianfeng Gao ◽  
Fan Gu

Abstract Based on a highway reconstruction project in southern China, this study aims to put forward a method to determine the proper treatment depth of the existing subgrade. First, some field tests including the Beckman beam deflection test and portable falling weight deflectometer (PFWD) test were carried out. The results showed that there was a good correlation between the Beckman beam deflection (L) and PFWD modulus (Ep). Subsequently, a subgrade section was excavated and backfilled with cement-stabilized soil in layers. Compaction test, dynamic cone penetrometer rate test, plate load test and Beckman beam deflection test were performed to evaluate the treatment effect. To make sure, the subgrade was treated deeply enough, the Beckman beam deflection (L) was used as the controlled indicator among all the measured indexes for it was the hardest metric to meet. According to the design deflection and decreasing law of the measured deflections with the different number of the stabilized layers, the treatment depth was finally determined. As the PFWD test is superior to the deflection test in the detection efficiency, and the deflection value can be calculated from PFWD modulus by correlation formulas, thus the latter index can be used as a more suitable parameter for estimating the treatment depth instead of the former. Consequently, based on the measured PFWD moduli of the existing subgrade, six treatment schemes considering different treatment depths were proposed. It was confirmed that the method developed from this study is feasible and worth being extensively applied.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Wuguang Lin ◽  
Yoon-ho Cho ◽  
In Tai Kim

Concrete block pavement (CBP) is distinct from typical concrete or asphalt pavements. It is built by using individual blocks with unique construction patterns forming a discrete surface layer to bear traffic loadings. The surface structure of CBP varies depending on the block shapes and construction patterns, so it is hard to apply a general equivalent elastic modulus estimation method to define the surface structural strength. In this study, FEM analysis and dynamic loading test were carried out to develop a deflection prediction model for CBP considering the block shapes and construction patterns. Based on the analysis results, it was found that block shapes did not have much effect on load distribution, whereas construction patterns did. By applying the deflection prediction model to the rutting model for CBP proposed by Sun, the herringbone bond pattern showed the best performance comparing with stretcher bond or basket weave bond pattern. As the load repetition increased to 1.2 million, the rutting depth of CBP constructed by herringbone bond pattern was 2 mm smaller than those constructed by the other two patterns.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
A. Hemalatha ◽  
N. Mahendran ◽  
G. Ganesh Prabhu

The experimental investigation on the effects of granular fill and geogrid reinforced granular fill on the behaviour of the static liquefaction potential of the subsoil is reported in this study. A series of plate load test were carried out with different thickness of the granular fill, number of geogrid layers, and size/dimension of the footing. The test results were presented in terms of bearing capacity and subgrade modulus for the settlement ofδ10,δ15, andδ20. The experimental results revealed that the introduction of granular fill significantly increases the bearing capacity and effectively control the settlement behaviour of the footing. The introduction of geogrid in granular fill enhanced the Percentage of Control in Settlement and Bearing Capacity Ratio by a maximum of 328.54% and 203.41%, respectively. The introduction of geogrid in granular fill interrupts the failure zone of the granular fill and enhances the subgrade modulus of the footing by a maximum of 255.55%; in addition subgrade modulus of the footing was increased with an increase in the number of geogrid layers. Based on the test results it is suggested that the footing with large size has beneficial improvement on the reinforced granular fill.


2010 ◽  
Vol 152-153 ◽  
pp. 1058-1061
Author(s):  
Zhou Wei ◽  
Xiao Xia Zhang

A wedged load test method is used to evaluate the adhesion strength of high-strength coatings, which have been processed with various sintering parameters. In this test, for stress concentration at cut tip, cracks are always induced and expanded rapidly cross the interface between coating and substrate. Macro-fracture and SEM image of coating interface of high-strength coating are characterized using optical microscope and scanning electron microscopy (SEM), respectively. In order to evaluate the bonding properties between coating and substrate effectively, corresponding finite element (FE) analysis has been conducted to evaluate the adhesion strength of high-strength coating. And stress distributions cross the interface of high-strength coating are obtained. The stress analysis can help to evaluate the bond strength of high-strength coating. Because of small specimen and contact relationship between wedged pressure head and wedged cuts, complex stress state is affected by many factors resulting from interface, and also by the thickness of coating.


Author(s):  
Qasim Al-Obaidi ◽  
Ali Al-Shamoosi ◽  
Azad Ahmed

This paper discusses the Ultimate Bearing Capacity of a stabilized soil by using the fly ash, stone dust and rubber powder for design of a pavement. This paper will help in utilization of locally available waste materials to reuse in the subbase and subgrade layers of pavement. Rubber powder is a waste byproduct generated from the recycling of tires, and is not so easy for degradable, and hence leads to release of harmful gases when it tends to burn. Stone dust is a locally available waste generated product from quarries. The generation of stone dust is increasing day to day in large quantity. The huge quantity of stone dust storage amount will affect the quality of soil. Fly ash is waste combusted coal ash powder generated from the steamers of coal boilers with the burning of fuel gases together. In the sub grade layer the soil is mixed in different proportions with stone dust for hard foundation. In the sub base layer the soil is stabilized with the combination of rubber powder and fly ash. When the rubber powder and fly ash, mixed with water for compaction generates a bond between the soil particles to settle the air fields. In this paper various percentages of rubber powder, stone dust and fly ash with different samples for pavement is layered, and after that plate load test is conducted upon it.


Sign in / Sign up

Export Citation Format

Share Document