On the Matrix, neuroscience and dialogue

2019 ◽  
Vol 52 (4) ◽  
pp. 458-474
Author(s):  
Martin Bhurruth

The author poses a position statement that Foulkes underplayed the importance of emotions as an organizing principle in the mental life of groups, and indeed, paid very little attention to emotions in his published works. Evidence from the field of neuroscience is drawn upon to identify seven emotional neuro-chemical systems in the sub-cortical region of the brain. The fundamental emotions are: rage, fear, seeking, panic/grief, lust, care and play. The article makes a distinction between emotions, as being physiological responses triggered by neurochemical release caused by perception of both external and internal realities, whereas feelings are a higher order level of functioning at cognitive levels that can articulate cause, meaning and symbolism of the more visceral emotional experiences. The article puts forward the idea that emotions are the biological substrate of the Foundation Matrix, linking all of humanity and the mammalian world. In turn, groups and individuals have valences to particular emotional responses and this will be demonstrated with examples from the Personal, Social and Dynamic Matrices. An elaboration of the concept of dialogue, within the wider sphere of communication, is put forward, which the author argues is the group analytic expression of love (care). Love is mutative and facilitates the plasticity of the brain/mind relationship encouraging new neuronal connections to be made, linking sub-cortical brain regions with the neo-cortex thinking cap.

1984 ◽  
Vol 4 (1) ◽  
pp. 1-7 ◽  
Author(s):  
E. Jeffrey Metter ◽  
Walter H. Riege ◽  
David E. Kuhl ◽  
Michael E. Phelps

The local cerebral metabolic rate for glucose was determined in 26 regions of the brain in 31 healthy subjects who underwent resting fluorodeoxyglucose positron emission tomography. Intercorrelations among the 26 regional measures were accepted as reliable at p < 0.01 (r > 0.45), uncorrected for the number of measures. From the matrix two apparently separate functional metabolic systems were identified: (1) a superior system involving the superior and middle frontal gyri, the inferior parietal lobule, and the occipital cortex; and (2) an inferior system involving the inferior frontal, Broca's, and posterior temporal regions. Evidence is presented to suggest that the superior system is involved in visual processing, memory recognition, and decision making, while the inferior system seems to at least participate in language-related functions.


2000 ◽  
Vol 12 (6) ◽  
pp. 1013-1023 ◽  
Author(s):  
K. M. O'Craven ◽  
N. Kanwisher

What happens in the brain when you conjure up a mental image in your mind's eye? We tested whether the particular regions of extrastriate cortex activated during mental imagery depend on the content of the image. Using functional magnetic resonance imaging (fMRI), we demonstrated selective activation within a region of cortex specialized for face perception during mental imagery of faces, and selective activation within a place-selective cortical region during imagery of places. In a further study, we compared the activation for imagery and perception in these regions, and found greater response magnitudes for perception than for imagery of the same items. Finally, we found that it is possible to determine the content of single cognitive events from an inspection of the fMRI data from individual imagery trials. These findings strengthen evidence that imagery and perception share common processing mechanisms, and demonstrate that the specific brain regions activated during mental imagery depend on the content of the visual image.


2021 ◽  
Vol 2 ◽  
Author(s):  
Chen Song

Structure shapes function. Understanding what is structurally special about the brain that allows it to generate consciousness remains a fundamental scientific challenge. Recently, advances in brain imaging techniques have made it possible to measure the structure of human brain, from the morphology of neurons and neuronal connections to the gross anatomy of brain regions, in-vivo and non-invasively. Using advanced brain imaging techniques, it was discovered that the structural diversity between neurons and the topology of neuronal connections, as opposed to the sheer number of neurons or neuronal connections, are key to consciousness. When the structural diversity is high and the connections follow a modular topology, neurons will become functionally differentiable and functionally integrable with one another. The high levels of differentiation and integration, in turn, enable the brain to produce the richest conscious experiences from the smallest number of neurons and neuronal connections. Consequently, across individuals, those with a smaller brain volume but a higher structural diversity tend to have richer conscious experiences than those with a larger brain volume but a lower structural diversity. Moreover, within individuals, a reduction in neuronal connections, if accompanied by an increase in structural diversity, will result in richer conscious experiences, and vice versa. These findings suggest that having a larger number of neurons and neuronal connections is not necessarily beneficial for consciousness; in contrast, an optimal brain architecture for consciousness is one where the richest conscious experiences are generated from the smallest number of neurons and neuronal connections, at the minimal cost of biological material, physical space, and metabolic energy.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Jonas A. Hosp ◽  
Andreas R. Luft

The motor system has the ability to adapt to environmental constraints and injury to itself. This adaptation is often referred to as a form of plasticity allowing for livelong acquisition of new movements and for recovery after stroke. We are not sure whether learning and recovery work via same or similar neural mechanisms. But, all these processes require widespread changes within the matrix of the brain. Here, basic mechanisms of these adaptations on the level of cortical circuitry and networks are reviewed. We focus on the motor cortices because their role in learning and recovery has been investigated more thoroughly than other brain regions.


2020 ◽  
Vol 21 ◽  
Author(s):  
Sayed Md Mumtaz ◽  
Gautam Bhardwaj ◽  
Shikha Goswami ◽  
Rajiv Kumar Tonk ◽  
Ramesh K. Goyal ◽  
...  

: The Glioblastoma Multiforme (GBM; grade IV astrocytoma) exhort tumor of star-shaped glial cell in the brain. It is a fast-growing tumor that spreads to nearby brain regions specifically to cerebral hemispheres in frontal and temporal lobes. The etiology of GBM is unknown, but major risk factors are genetic disorder like neurofibromatosis and schwanomatosis which develop the tumor in the nervous system. The management of GBM with chemo-radio therapy leads to resistance and current drug regimen like Temozolomide (TMZ) is less efficacious. The reasons behind failure of drugs are due to DNA alkylation in cell cycle by enzyme DNA guanidase and mitochondrial dysfunction. Naturally occurring bio-active compounds from plants known as phytochemicals, serve as vital sources for anti-cancer drugs. Some typical examples include taxol analogs, vinca alkaloids such as vincristine, vinblastine, podophyllotoxin analogs, camptothecin, curcumin, aloe emodin, quercetin, berberine e.t.c. These phytochemicals often act via regulating molecular pathways which are implicated in growth and progression of cancers. However the challenges posed by the presence of BBB/BBTB to restrict passage of these phytochemicals, culminates in their low bioavailability and relative toxicity. In this review we integrated nanotech as novel drug delivery system to deliver phytochemicals from traditional medicine to the specific site within the brain for the management of GBM.


2020 ◽  
Vol 20 (9) ◽  
pp. 800-811 ◽  
Author(s):  
Ferath Kherif ◽  
Sandrine Muller

In the past decades, neuroscientists and clinicians have collected a considerable amount of data and drastically increased our knowledge about the mapping of language in the brain. The emerging picture from the accumulated knowledge is that there are complex and combinatorial relationships between language functions and anatomical brain regions. Understanding the underlying principles of this complex mapping is of paramount importance for the identification of the brain signature of language and Neuro-Clinical signatures that explain language impairments and predict language recovery after stroke. We review recent attempts to addresses this question of language-brain mapping. We introduce the different concepts of mapping (from diffeomorphic one-to-one mapping to many-to-many mapping). We build those different forms of mapping to derive a theoretical framework where the current principles of brain architectures including redundancy, degeneracy, pluri-potentiality and bow-tie network are described.


Author(s):  
Antonina Kouli ◽  
Marta Camacho ◽  
Kieren Allinson ◽  
Caroline H. Williams-Gray

AbstractParkinson’s disease dementia is neuropathologically characterized by aggregates of α-synuclein (Lewy bodies) in limbic and neocortical areas of the brain with additional involvement of Alzheimer’s disease-type pathology. Whilst immune activation is well-described in Parkinson’s disease (PD), how it links to protein aggregation and its role in PD dementia has not been explored. We hypothesized that neuroinflammatory processes are a critical contributor to the pathology of PDD. To address this hypothesis, we examined 7 brain regions at postmortem from 17 PD patients with no dementia (PDND), 11 patients with PD dementia (PDD), and 14 age and sex-matched neurologically healthy controls. Digital quantification after immunohistochemical staining showed a significant increase in the severity of α-synuclein pathology in the hippocampus, entorhinal and occipitotemporal cortex of PDD compared to PDND cases. In contrast, there was no difference in either tau or amyloid-β pathology between the groups in any of the examined regions. Importantly, we found an increase in activated microglia in the amygdala of demented PD brains compared to controls which correlated significantly with the extent of α-synuclein pathology in this region. Significant infiltration of CD4+ T lymphocytes into the brain parenchyma was commonly observed in PDND and PDD cases compared to controls, in both the substantia nigra and the amygdala. Amongst PDND/PDD cases, CD4+ T cell counts in the amygdala correlated with activated microglia, α-synuclein and tau pathology. Upregulation of the pro-inflammatory cytokine interleukin 1β was also evident in the substantia nigra as well as the frontal cortex in PDND/PDD versus controls with a concomitant upregulation in Toll-like receptor 4 (TLR4) in these regions, as well as the amygdala. The evidence presented in this study show an increased immune response in limbic and cortical brain regions, including increased microglial activation, infiltration of T lymphocytes, upregulation of pro-inflammatory cytokines and TLR gene expression, which has not been previously reported in the postmortem PDD brain.


Author(s):  
Sarah F. Beul ◽  
Alexandros Goulas ◽  
Claus C. Hilgetag

AbstractStructural connections between cortical areas form an intricate network with a high degree of specificity. Many aspects of this complex network organization in the adult mammalian cortex are captured by an architectonic type principle, which relates structural connections to the architectonic differentiation of brain regions. In particular, the laminar patterns of projection origins are a prominent feature of structural connections that varies in a graded manner with the relative architectonic differentiation of connected areas in the adult brain. Here we show that the architectonic type principle is already apparent for the laminar origins of cortico-cortical projections in the immature cortex of the macaque monkey. We find that prenatal and neonatal laminar patterns correlate with cortical architectonic differentiation, and that the relation of laminar patterns to architectonic differences between connected areas is not substantially altered by the complete loss of visual input. Moreover, we find that the degree of change in laminar patterns that projections undergo during development varies in proportion to the relative architectonic differentiation of the connected areas. Hence, it appears that initial biases in laminar projection patterns become progressively strengthened by later developmental processes. These findings suggest that early neurogenetic processes during the formation of the brain are sufficient to establish the characteristic laminar projection patterns. This conclusion is in line with previously suggested mechanistic explanations underlying the emergence of the architectonic type principle and provides further constraints for exploring the fundamental factors that shape structural connectivity in the mammalian brain.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florian Bitsch ◽  
Philipp Berger ◽  
Andreas Fink ◽  
Arne Nagels ◽  
Benjamin Straube ◽  
...  

AbstractThe ability to generate humor gives rise to positive emotions and thus facilitate the successful resolution of adversity. Although there is consensus that inhibitory processes might be related to broaden the way of thinking, the neural underpinnings of these mechanisms are largely unknown. Here, we use functional Magnetic Resonance Imaging, a humorous alternative uses task and a stroop task, to investigate the brain mechanisms underlying the emergence of humorous ideas in 24 subjects. Neuroimaging results indicate that greater cognitive control abilities are associated with increased activation in the amygdala, the hippocampus and the superior and medial frontal gyrus during the generation of humorous ideas. Examining the neural mechanisms more closely shows that the hypoactivation of frontal brain regions is associated with an hyperactivation in the amygdala and vice versa. This antagonistic connectivity is concurrently linked with an increased number of humorous ideas and enhanced amygdala responses during the task. Our data therefore suggests that a neural antagonism previously related to the emergence and regulation of negative affective responses, is linked with the generation of emotionally positive ideas and may represent an important neural pathway supporting mental health.


Sign in / Sign up

Export Citation Format

Share Document