Effect of surface treatment and nanoclay on thermal and mechanical performances of jute fabric/biopol ‘green’ composites

2011 ◽  
Vol 30 (22) ◽  
pp. 1841-1856 ◽  
Author(s):  
Mohammad K. Hossain ◽  
Mohammad W. Dewan ◽  
Mahesh Hosur ◽  
Shaik Jeelani

The effects of surface modification of jute fibers and nanoclay on jute–biopol green composites are evaluated by the thermal and interlaminar shear strength (ILSS) characterizations. Four subsequent chemical treatments including detergent washing, dewaxing, alkali treatment, and acetic acid treatment were performed to facilitate better bonding between the fiber and matrix. The scanning electron microscopy and Fourier transform infrared spectroscopy study confirmed improved fiber surfaces for better adhesion with matrix after final treatment. Enhanced thermal performance and tensile properties were obtained due to chemical treatments. Montmorillonite K10 nanoclay (2–4 wt.%) was dispersed into a biodegradable polymer, biopol, using solution intercalation technique and magnetic stirring. Nanoclay-infused biopol resulted in 7% improvement in the degree of crystallinity over the neat biopol. Jute fiber-reinforced biopol biocomposites with and without nanoclay were produced using treated and untreated jute fibers by the compression molding process. Treated jute fiber-reinforced biopol composites (TJBC) without nanoclay showed 5% and 9% increases in decomposition temperature and storage modulus, respectively, and 19% decrease in coefficient of thermal expansion compared to untreated jute fiber-reinforced biopol composites (UTJBC). The respective values were 5%, 100%, and 45% for 4% nanoclay-infused TJBC compared to UTJBC without nanoclay. ILSS evaluated by the short-beam shear tests, improved by 20% in the TJBC compared to the UTJBC. Incorporation of 4 wt.% nanoclay in TJBC further improved the ILSS by 22% compared to that of TJBC without nanoclay.

2011 ◽  
Vol 1312 ◽  
Author(s):  
Mohammad K Hossain ◽  
Mohammad W Dewan ◽  
Mahesh Hosur ◽  
Shaik Jeelani

ABSTRACTSurface modification of jute fibers was accomplished by performing chemical treatments including detergent washing, dewaxing, alkali, and acetic acid treatment. Morphology of modified surfaces examined using scanning electron microscopy (SEM) revealed improved surfaces for better adhesion with matrix. Better thermal performance of treated fibers was found from thermogravimetric analysis (TGA). Enhanced tensile properties of treated fibers were obtained from tensile tests. Using solution intercalation technique and magnetic stirring, 2%, 3%, and 4% by weight Montmorillonite K10 nanoclay were dispersed into a biodegradable polymer, Biopol. Thermal performance of nanoclay infused Biopol characterized using dynamic scanning calorimetry (DSC) showed improved degree of crystallinity by 7%. Jute fiber reinforced Biopol biocomposites with and without nanoclay were manufactured using treated and untreated jute fibers by compression molding process. Thermal and mechanical responses of treated fiber reinforced Biopol composites (TJBC) without nanoclay evaluated using dynamic mechanical analysis (DMA) and flexure tests showed 9% and 12% increase in storage modulus and flexure strength, respectively, compared to untreated jute fiber reinforced composites (UTJBC). The respective values were 100% and 35% for 4% nanoclay infused TJBC compared to UTJBC without nanoclay.


2018 ◽  
Vol 49 (7) ◽  
pp. 906-922
Author(s):  
Xuan Liu ◽  
Sen-Jie Hao ◽  
Yi-Hua Cui ◽  
Hai-yan Chen

The interfacial compatibility possessed critical effect on the performance of jute fiber-reinforced composites. In order to improve the interfacial compatibility of jute fiber-reinforced polypropylene composites, jute fibers were treated by alkali treatment, ethylenediamine/alkali treatment and acid/alkali treatment. Through analysis by scanning electron microscopy, atomic force microscopy, Fourier transform infrared, X-ray diffraction, surface energy measurement, and tensile strength test, the acid/alkali treatment was deemed as the most efficient method for improving the surface properties of jute fibers among three kinds of surface treatments. The interfacial compatibility of treated fiber-reinforced composites was enhanced significantly, which attributed to the improvement of surface properties of jute fibers. Due to the acidic hydrolysis of acid treatment, the surface energy of acid/alkali treated fibers was increased by 45.58% compared with the control fibers. The tensile and bending strength of acid/alkali treated fiber-reinforced composites were enhanced by 34.80% and 22.53%, respectively. Therefore, the acid/alkali treatment was potential and competitive surface treatment to enhance the interfacial compatibility of jute fiber-reinforced composites.


2021 ◽  
Vol 8 (5) ◽  
pp. 11-17
Author(s):  
Syed Rashedul Islam ◽  
Abeer Alassod ◽  
Mohammed Kayes Patoary ◽  
Tayyab Naveed ◽  
Md Arshad Ali ◽  
...  

In recent years, reinforced composites from biodegradable and natural fibers have a worldwide scope for advanced applications. However, the core limitation of natural fiber reinforced composites are poor consistency among supporting fibers and the matrix. Therefore, optimal structural performance of fibers and matrix is desirable. In this study, chemical treatments (i.e., alkali pretreatment, acid pretreatment, and scouring) were applied to jute fibers for improvement of composite properties. Thermal, thermo-mechanical, and flexural properties, and surface morphology, of untreated and treated jute fibers were studied on the treated fibers. Jute fiber/epoxy composite properties were analyzed by thermogravimetric analysis (TGA), flexural strength and modulus, and dynamic mechanical analysis (DMA). The chemical treatments had a significant impact on the properties of jute fiber composites.


2021 ◽  
Vol 13 ◽  
Author(s):  
Md. Faruk Hossen ◽  
Md. Ali Asraf ◽  
Md. Kudrat-E-Zahan ◽  
C. M. Zakaria

: The research on jute fiber reinforced polymer composites is an emergent concern with the development of new materials due to its significant properties like economical, partially biodegradable and environment friendly. It is wondered that the hydrophilic nature of jute fiber negatively affects the interfacial interaction with hydrophobic polymeric materials in the composite which then affects the resultant mechanical, microstructural and physico-chemical absorption properties. In order to overcome this fact, researchers have been carried out some techniques for fiber surface chemical treatments. On the other hand, due to the low processing costs and design flexibility, thermoplastics deal many benefits over thermoset polymers, and polyethylene shows excellent processing behaviors such as: low density, low cost, considerable flex life, outstanding surface hardness, scratch resistance and good electrical insulator. Beside the traditional thermoplastic and thermosetting polymers, montmorillonite nanoclay are also receiving attention to manufacture fiber polymer nanocomposites for industrial and household applications as well. The review is considered to highlight the progress of jute fiber reinforced polymer nanocomposites. The study also focuses on the several features of juter polymer composites and nanocomposites as a function of fiber chemical treatments.


2019 ◽  
Vol 28 (6) ◽  
pp. 388-397
Author(s):  
Jai Inder Preet Singh ◽  
Sehijpal Singh ◽  
Vikas Dhawan

In this work, partially biodegradable green composites have been developed with the help of compression molding technique. Jute fibers were selected as a reinforcement and epoxy resin as matrix material. The influence of alkali treatment on various mechanical properties of jute/epoxy composites was investigated, with concentrations ranging from 1%, 3%, 5%, 7%, and 9% NaOH solution. Various test results indicate that with an increase in concentration, tensile and flexural strength increases up to 5% concentration of NaOH, thereafter both the properties decrease, but impact strength increases up to 7% concentration and thereafter decreases. The results of mechanical characterizations were further validated through the study of morphology with scanning electron microscopy and Fourier transform infrared analysis. The optimal concentration of 5% concentration for alkali treatment of fibers have been suggested.


2007 ◽  
Vol 1 (1) ◽  
pp. 78-86 ◽  
Author(s):  
U. S. Ishiaku ◽  
X. Y. Yang ◽  
Y. W. Leong ◽  
H. Hamada ◽  
T. Semba ◽  
...  

An attempt was made at increasing both toughness and rigidity by simultaneous toughening and reinforcement. Natural fiber-reinforced biodegradable polyester blend composites were prepared from modified and unmodified biodegradable polyesters blends with surface-treated and untreated jute fibers by melt mixing and subsequent molding. The resulting cross-linked and uncross-linked poly(lactic acid) (PLA)/poly(caprolactone) (PCL)blends were used as the biodegradable polyester matrixes. Alkali treatment was performed as the surface treatments on the jute fiber. This study revealed that alkali treatment of the jute fiber improved the mechanical properties of the composites. The addition of dicumyl peroxide (DCP) also imparted significant changes to the PLA/PCL blend as revealed by thermal and dynamic mechanical analyses. Morphological observation of the DCP modified blend revealed the existence of a third phase at the boundary region of the PLA and PCL phases that could be termed the 'interphase,' while extensive plastic deformation of the tensile fracture surface of the DCP modified blend was observed. The crystalline nature of PLA and PCL are retained in the blend, while the presence of jute fibers interferes with cold crystallization.


2014 ◽  
Vol 936 ◽  
pp. 1356-1360
Author(s):  
Jun Fei Yin ◽  
Yu Zhang ◽  
Ting Ting Yan ◽  
He Qiu

In this study, jute fibers and polypropylene fiber (PP) were added into cement-based mortar to improve their compressive strength. Results obtained have shown that the compressive strength of the motar was perfect with jute fiber of 19mm length at the fiber contents of 0.8 kg·m-3. The reinforcing mechanism of fiber in the motar was analyzed by means of comparing of the mortar compressive properties under different circumstances, and the testing results of scanning electron microscope (SEM) and the addition of filament in experiments.


Sign in / Sign up

Export Citation Format

Share Document