Feasibility studies on wet grinding of carbon fibre reinforced epoxy polymer at minimum defect condition via eccentric sleeve grinding

2021 ◽  
pp. 073168442110517
Author(s):  
Danish Handa ◽  
VS Sooraj

Although surface grinding is reported to be capable of precision material removal in carbon fibre reinforced epoxy polymer composites (CFRPs), it is highly limited by deprived cutting temperature dissipation, tool wear and sensitivity to undesired cutting defects. Continuous engagement of abrasive grains and successive accumulation of heat at cutting interface in conventional surface grinding results in severe surface damages. Though the controlled application of cutting fluids exhibited improved surface integrity, entrapment of fluid droplets into the defective zones/cracks of fibre, matrix and its interfaces are shown to be stimulating further defect propagation. Present paper investigates the feasibility of improving cutting fluid application in CFRP grinding, establishing a minimum surface defect condition through eccentric sleeve grinding (ESG). The reduction of post-grinding surface defects through an intermittent-progressive cutting scheme in ESG is demonstrated and the efficacy of cutting fluids in such a grinding scheme is illustrated through the comparison of grinding forces and surface characteristics.

Author(s):  
Aishah Najiah Dahnel ◽  
Christopher Kibbler ◽  
Stuart Barnes ◽  
Helen Ascroft

Carbon Fibre Composites (CFC) are commonly used in aerospace, automotive and civil industries to manufacture high performance products which require high strength with low weight. They are usually produced to near net shape, however machining such as milling is frequently performed to achieve dimensional accuracy. This paper presents the effect of using conventional (water-based) and carbon dioxide (CO2) cutting fluids during milling of CFC on cutting forces, temperature and surface roughness in comparison to dry milling. Milling experiments were conducted using uncoated tungsten carbide milling routers at a constant feed rate and depth of cut of 0.025 mm/rev and 5 mm, respectively. Cutting speeds used were 100, 150 and 200 m/min. Cutting forces were measured using a dynamometer, temperatures during milling were measured at the workpiece by thermocouples and surface roughness (Ra) of the milled surfaces were measured using a surface profilometer. Milling with conventional and CO2 cutting fluids resulted in higher cutting forces than dry milling at all cutting speeds used. This was attributed to cooling of the CFC, which retained the strength of polymer matrix during machining. Cutting temperatures were the highest and reached beyond 100°C during dry milling. The use of conventional cutting fluid during milling provided significant cooling to the workpiece, in which cutting temperatures were maintained below 30°C at all cutting speeds used. Cooling the workpiece during milling with CO2 cutting fluid resulted in cutting temperatures within the range of 65–86°C. Even though the application of cutting fluids during milling generated higher cutting forces than dry milling, it produced favourable results in terms of surface finish. The use of cutting fluid during machining CFC is shown to be highly effective in sustaining the strength of CFC materials as a result of low cutting temperature.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2088 ◽  
Author(s):  
Munish Gupta ◽  
Catalin Pruncu ◽  
Mozammel Mia ◽  
Gurraj Singh ◽  
Sunpreet Singh ◽  
...  

With regard to the manufacturing of innovative hard-machining super alloys (i.e., Inconel-800), a potential alternative for improving the process is using a novel cutting fluid approach. Generally, the cutting fluids allow the maintenance of a better tool topography that can generate a superior surface quality of machined material. However, the chemical components of fluids involved in that process may produce harmful effects on human health and can trigger environmental concerns. By decreasing the cutting fluids amount while using sustainable methods (i.e., dry), Near Dry Machining (NDM) will be possible in order to resolve these problems. This paper discusses the features of two innovative techniques for machining an Inconel-800 superalloy by plain turning while considering some critical parameters such as the cutting force, surface characteristics (Ra), the tool wear rate, and chip morphology. The research findings highlight the near-dry machining process robustness over the dry machining routine while its great potential to resolve the heat transfer concerns in this manufacturing method was demonstrated. The results confirm other benefits of these methods (i.e., NDM) linked to the sustainability aspects in terms of the clean process, friendly environment, and permits as well as in terms of improving the manufacturing characteristics.


2019 ◽  
Vol 16 (33) ◽  
pp. 21-29
Author(s):  
T. I. M. BOTELHO ◽  
G. S. FIGUEIREDO ◽  
F. M. PRAXEDES ◽  
J. V. U. TEIXEIRA ◽  
E. B. MONTEIRO

The increasing technological advances obtained both in the development of new materials and of machine tools increased the demand for the machining processes and in addition, the use of increased cutting fluids. However, it’s necessary to have characteristics that don’t harm the environment and the operator. In machining processes, cutting fluids, when properly chosen and applied, may reflect benefits during the manufacturing process. This work evaluated the performance of a commercial cutting fluid by comparing it with vegetable oil extracted from carapa guianensis in the abnt 1045 steel turning process. The cutting speed (vc), tool feed (f) and depth (ap) and the influence of the use of both of them on the metal was verified with the following variables: chip analysis, surface finish, cutting temperature and tool wear. It was observed that with the use of andiroba oil, better chip was generated for the safety of the operator, higher cutting temperatures in the piece, higher tool wear and better surface finish with a difference of 23% compared to commercial cutting fluid. Thus, the fluid from andiroba based on the conventional application demonstrated a viable alternative in the turning process of abnt 1045 steel, because it’s biodegradable and reduces petroleum-based cutting fluids.


2019 ◽  
Vol 16 (33) ◽  
pp. 927-935
Author(s):  
T. I. M. BOTELHO ◽  
G. S. FIGUEIREDO ◽  
F. M. PRAXEDES ◽  
J. V. U. TEIXEIRA ◽  
E. B. MONTEIRO

The increasing technological advances obtained both in the development of new materials and of machine tools increased the demand for the machining processes and in addition, the use of increased cutting fluids. However, it’s necessary to have characteristics that don’t harm the environment and the operator. In machining processes, cutting fluids, when properly chosen and applied, may reflect benefits during the manufacturing process. This work evaluated the performance of a commercial cutting fluid by comparing it with vegetable oil extracted from carapa guianensis in the abnt 1045 steel turning process. The cutting speed (vc), tool feed (f) and depth (ap) and the influence of the use of both of them on the metal was verified with the following variables: chip analysis, surface finish, cutting temperature and tool wear. It was observed that with the use of andiroba oil, better chip was generated for the safety of the operator, higher cutting temperatures in the piece, higher tool wear and better surface finish with a difference of 23% compared to commercial cutting fluid. Thus, the fluid from andiroba based on the conventional application demonstrated a viable alternative in the turning process of abnt 1045 steel, because it’s biodegradable and reduces petroleum-based cutting fluids.


Author(s):  
Martin B. G. Jun ◽  
Suhas S. Joshi ◽  
Richard E. DeVor ◽  
Shiv G. Kapoor

An atomization-based cutting fluid application system is developed for micro-end milling. The system was designed to ensure spreading of the droplets on the workpiece surface based on the analysis of the atomized droplet impingement dynamics. The results of the initial experiments conducted to examine the viability of the system show that the cutting forces are lower and tool life is significantly improved with the atomized cutting fluids when compared to dry and flood cooling methods. Also, application of atomized cutting fluid is found to result in good chip evacuation and lower cutting temperature. Experiments were also conducted to study the effect of fluid properties on cutting performance, and the results show that cutting fluids with lower surface tension and higher viscosity perform better in terms of cutting forces.


2021 ◽  
Vol 15 (2) ◽  
pp. 8042-8056
Author(s):  
Prashantha Kumar S T ◽  
Thirtha Prasada HP

Duplex stainless steel (DSS)-2205 comes under hard to machine material owing to its inherent properties but more applications in severe working conditions hence, selection of turning process parameters and suitable cutting fluids of DSS-2205 is essential. In the present work, investigate the performance of Deionized water, neat cut oil, and emulsified fluid on cutting temperature and surface roughness during turning of duplex stainless steel-2205 under minimum quantity lubrication technique. Based on a face-centered composite design, 20 experiments were conducted with varying speed, feed, and depth of cut in three levels for three different fluids. Analysis of variance (ANOVA) is used to identify significant parameters that affect the response. Numerical optimization was carried out under Desirability Function Analysis (DFA) for cutting temperature during deionized water cutting fluid for surface roughness during emulsified cutting fluid. Depth of cut is the significant factor for cutting temperature contribution is 74.83% during Deionized water as a fluid, and feed is the significant factor for surface roughness contribution is 93.57% during emulsified fluid. The optimum cutting parameters were determined for speed (50m/min), feed (0.051mm/rev) and depth of cut (0.4mm). Experimental results revealed that Deionized water gives better results for reduced the cutting temperature and emulsified fluid for surface roughness reduction.


Author(s):  
Gustavo Fernandes ◽  
Sanderson Clayton ◽  
Bernardo Jakitsch ◽  
Luis Henrique Andrade Maia ◽  
Mariana Gomes ◽  
...  

2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 773
Author(s):  
Elisabet Benedicto ◽  
Eva María Rubio ◽  
Laurent Aubouy ◽  
María Ana Sáenz-Nuño

The machinability of titanium alloys still represents a demanding challenge and the development of new clean technologies to lubricate and cool is greatly needed. As a sustainable alternative to mineral oil, esters have shown excellent performance during machining. Herein, the aim of this work is to investigate the influence of esters’ molecular structure in oil-in-water emulsions and their interaction with the surface to form a lubricating film, thus improving the efficiency of the cutting fluid. The lubricity performance and tool wear protection are studied through film formation analysis and the tapping process on Ti6Al4V. The results show that the lubricity performance is improved by increasing the formation of the organic film on the metal surface, which depends on the ester’s molecular structure and its ability to adsorb on the surface against other surface-active compounds. Among the cutting fluids, noteworthy results are obtained using trimethylolpropane trioleate, which increases the lubricating film formation (containing 62% ester), thus improving the lubricity by up to 12% and reducing the torque increase due to tool wear by 26.8%. This work could be very useful for fields where often use difficult-to-machine materials—such as Ti6Al4V or γ-TiAl – which require large amounts of cutting fluids, since the formulation developed will allow the processes to be more efficient and sustainable.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Michael Müller ◽  
Lukas Stahl ◽  
Robar Arafat ◽  
Nadine Madanchi ◽  
Christoph Herrmann

AbstractIn grinding processes, heat is generated by the contact of the grains with the workpiece. In order to reduce damages on the workpiece and the grinding tool, cutting fluids are necessary for most grinding processes. They have the tasks of cooling and lubricating the contact zone and to remove the chips from the contact area. Different types of cutting fluids perform differently regarding these tasks, which can be investigated on a laboratory scale. However, the results of those experiments are limited to certain workpieces and processes and information about the contact mechanics are not available. The experimental investigation of contact mechanics under cutting fluid influence is hardly possible. For this reason, this paper uses a measurement strategy that uses scaled topographies and has already been successfully applied to contact mechanics problems. With such a setup, it is intended that at an early stage in the development of cutting fluids, their characteristics in terms of contact mechanics can be determined very efficiently. To demonstrate this approach, two different cutting fluids were tested with the help of the associated test rig—a water miscible emulsion and a non-water miscible grinding oil. The two fluids showed fundamentally different characteristics regarding their hydrodynamic load bearing effect, their influence on the friction behavior of the contact and their fluid flow in the gap. The properties analyzed here correspond to the practical application of cutting fluids. The results underline the potential of the presented setup for an integration into the development process of cutting fluids.


Sign in / Sign up

Export Citation Format

Share Document