Thermoplastic polyurethane composites for railway applications: Experimental and numerical study of hybrid laminates with improved impact resistance

2019 ◽  
pp. 089270571985604 ◽  
Author(s):  
F Rizzo ◽  
S Cuomo ◽  
F Pinto ◽  
G Pucillo ◽  
M Meo

Due to the introduction of highly restrictive safety and pollution legislations in the railway industry, weight reduction has become an increasingly important topic over the last decade. Carbon fibre-reinforced polymers (CFRPs) constitute an excellent alternative to traditional materials, due to their highly specific in-plane mechanical properties. Their use in railway industry, however, is currently hindered by their weak out-of-plane properties. Bogies and underframes are often subjected to impact loadings caused by objects and debris surrounding the tracks (i.e. ice, ballast) that become airborne during the train transit and impact lower part of the carriage. While metal structures absorb impact energy via plastic deformation, barely visible impact damage can occur in CFRP, weakening the component, and often leading to catastrophic failures. This work proposes a method for the improvement of impact absorption performance of railway composite structures via the addition of a thermoplastic polyurethane (TPU) coating to CFRP laminates. The thermomechanical behaviour of the thermoplastic layer was investigated with dynamic mechanical analysis and differential scanning calorimetry analysis to optimize the manufacturing process, while damping tests were carried out to demonstrate its unaltered energy absorption ability in the final manufactured structure. TPU/CFRP plates (150 × 100 mm2 of in-plane size) were subjected to 2, 3 and 5 J impacts, and the results were compared with those of traditional CFRP laminates. Non-destructive test (NDT; i.e. C-scan, phased array) and compression-after-impact test were carried out on the impacted samples to assess the damaged area and residual in-plane mechanical properties. Results show that the TPU layer modifies the energy absorption mechanism, preventing the propagation of damage within the CFRP and resulting in undamaged samples even at the highest energy. To predict the TPU/CFRP impact behaviour and identify the best process parameters to optimize impact energy absorption, a finite element model was developed and validated using experimental data. The comparison showed good correlation, and a fine approximation of the different impact mechanisms was observed with a maximum error of 5% between experimental and simulated output values. The experimental and numerical results show that the TPU/CFRP laminates constitute a novel solution for the manufacturing of lighter and safer railway composite structures.

2012 ◽  
Vol 706-709 ◽  
pp. 729-734 ◽  
Author(s):  
Masahiro Higuchi ◽  
Tadaharu Adachi ◽  
Yuto Yokochi ◽  
Kenta Fujimoto

In the study, novel fabrication processes of functionally-graded (FG) syntactic foams were developed to control distribution of the mechanical properties in the FG foams for highly impact energy absorption. In order to control mechanical properties, the density distributions in FG foams were graded by floating phenomenon of the light-weight micro-balloons in matrix resin during curing process. The density distribution in the foam could be controlled by adjusting the average volume fraction and the turning procedure of the mold before grading the micro-balloons in the foam. The compression tests of the fabricated FG foams suggested that the foams had high absorption of impact energy since the foams collapsed progressively due to the grading of the density distribution.


2015 ◽  
Vol 216 ◽  
pp. 79-88 ◽  
Author(s):  
Huiming Ning ◽  
Yuan Li ◽  
Ning Hu ◽  
Masahiro Arai ◽  
Naoya Takizawa ◽  
...  

2000 ◽  
Vol 50 (4) ◽  
pp. 381-390 ◽  
Author(s):  
Dai Gil Lee ◽  
Tae Seong Lim ◽  
Seong Sik Cheon

2020 ◽  
Vol 40 (7) ◽  
pp. 615-627
Author(s):  
Mohd Kamal Mohd Shah ◽  
Yeo Kiam Beng ◽  
Sanjay Mohan ◽  
Mohd Nizam Husen ◽  
Irma Othman ◽  
...  

AbstractPultrusion is considered to be a cost efficient method for developing composite structures. It facilitates the fabrication of uniform cross-section products with improved fiber alignment, mechanical properties, good surface characteristics, etc. In order to ascertain the crashworthiness, the pultruded composites shall be able to resist impact loads, and in this concern, the energy absorption capacity of the pultruded composites must be explored. This article presents the experimental and numerical investigation of the crushing behavior of polyester based pultruded composite with rectangular cross section. Pultruded rectangular tubes with e-glass/polyester composites have been developed for this study. The cross-section of the tubes was developed into two triggering profiles, the uniform edge around the section and the tulip pattern. The tubes were subjected to impact loads, and the effect of these triggering profiles on the energy absorption capacity of the tubes has been investigated. The testing of all composites has been carried out at three different impact velocities (10, 20 and 45 mm/min). The results have revealed the dependence of crushing behavior of the tubes on the loading velocity and the triggered profiles. Lower peak load and high specific energy absorption (SEA) was observed in the tube with tulip pattern profile. The results obtained from the simulation have also shown consistency with the real-time experiments.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 344
Author(s):  
S. S. R. Koloor ◽  
A. Karimzadeh ◽  
M. R. Abdullah ◽  
M. Petrů ◽  
N. Yidris ◽  
...  

The stiffness response or load-deformation/displacement behavior is the most important mechanical behavior that frequently being utilized for validation of the mathematical-physical models representing the mechanical behavior of solid objects in numerical method, compared to actual experimental data. This numerical study aims to investigate the linear-nonlinear stiffness behavior of carbon fiber-reinforced polymer (CFRP) composites at material and structural levels, and its dependency to the sets of individual/group elastic and damage model parameters. In this regard, a validated constitutive damage model, elastic-damage properties as reference data, and simulation process, that account for elastic, yielding, and damage evolution, are considered in the finite element model development process. The linear-nonlinear stiffness responses of four cases are examined, including a unidirectional CFRP composite laminate (material level) under tensile load, and also three multidirectional composite structures under flexural loads. The result indicated a direct dependency of the stiffness response at the material level to the elastic properties. However, the stiffness behavior of the composite structures depends both on the structural configuration, geometry, lay-ups as well as the mechanical properties of the CFRP composite. The value of maximum reaction force and displacement of the composite structures, as well as the nonlinear response of the structures are highly dependent not only to the mechanical properties, but also to the geometry and the configuration of the structures.


2020 ◽  
Vol 01 (04) ◽  
pp. 144-149
Author(s):  
Mostafizur Rahman ◽  
Sadnan Mohosin Mondol

Recently, the demands of composite materials used in various engineering applications are growing higher because of their outstanding mechanical and thermal properties. This study represents an experimental investigation to determine mechanical properties of Al-based composites materials using Cu and SiC as reinforcement. Al-30-wt%-Cu, Al-40-wt%-Cu, Al-30-wt%-SiC, and Al-40-wt%-SiC composite bars were fabricated using stir casting process to ensure uniform distribution of reinforced elements. The composite bars were prepared into required shape to conduct test for evaluating mechanical properties. Al-40-wt%-Cu shows improved properties such as, hardness, strength, and impact energy absorption than Al-30-wt%-Cu due to more presence of Cu content. Al-30-wt%-Cu and Al-40-wt%-Cu bars showed improved mechanical properties than both Al-30-wt%-SiC and Al-40-wt%-SiC. It is also seen that Al-30-wt%-Cu and Al-40-wt%-Cu showed high hardness, yield strength, and impact energy absorption compared to Al-30-wt%-SiC and Al-40-wt%-Cu respectively. On the other hand, Al-30-wt%-Cu is 3.5% lightweight than Al-30-wt%-SiC and Al-40-wt%-Cu is 2.11% lightweight than Al-40-wt%-SiC. Al-30-wt%-Cu and Al-40-wt%-Cu showed improved specific hardness, specific yield strength, and specific impact energy absorption compared to Al-30-wt%-SiC and Al-40-wt%-Cu respectively. In addition, Al-40-wt%-Cu showed better mechanical properties among the bars.


Sign in / Sign up

Export Citation Format

Share Document