Performance properties of WMA modified binders and asphalt mixtures containing PPA/SBR polymer blends

2021 ◽  
pp. 089270572110064
Author(s):  
Rezvan Babagoli ◽  
Farhang Jalali ◽  
Mohammad Khabooshani

The performance properties of asphalt binders and mixtures can be enhanced utilizing several modifiers, including; Poly Phosphoric Acid (PPA), Warm Mix Asphalt (WMA) modifiers, and Styrene–Butadiene Rubber (SBR). The current study evaluated the effect of PPA and WMA contents on rheological behavior of SBR modified binders and SMA mixtures. The modified binders were subjected to rotational viscosity, Dynamic Shear Rheometer, and Bending Beam Rheometer, Multiple Stress Creep Recovery (MSCR), and Linear Amplitude Sweep (LAS) tests. The SBR/PPA and SBR/PPA/WMA modified mixtures were subjected to Indirect tensile strength (ITS), dynamic creep, resilient modulus ( Mr), wheel track, and four-point beam fatigue (FPB) tests. To analyze the data, two-factor analysis of variance (ANOVA) was investigated. Based on the results of the MSCR test at both stress levels, modification of base bitumen by SBR, PPA and WMA additives causes an enhance in permanent deformation performance of original bitumen. LAS test results indicated that, utilization of SBR and WMA additives improves the fatigue life of bitumen. Also, by addition of PPA, the fatigue life of SBR modified binders increases. whereas, the fatigue lives are higher than original binders ones. Based on results, utilization of SBR and PPA enhances the Mr, rutting properties, ITS, FE, and fatigue behavior of specimens. By increasing the PPA percentage, the rutting and fatigue behavior enhances. Whereas, it causes a decreases in Mr and ITS of modified mixtures. Among warm additives, sasobit has better effect on enhancing the performance of binders and mixtures.

2020 ◽  
pp. 089270572098234
Author(s):  
Alireza Ameli ◽  
Ali Foroutan Naeini ◽  
Rezvan Babagoli ◽  
Ali Akbari

This work evaluated the effect of Anti-Stripping Agents (ASAs) on performance behavior of bitumen and high and intermediate temperature performance of SMA mixtures modified by Poly Phosphoric Acid (PPA), Warm Mix Asphalt (WMA) and Styrene-Butadiene Rubber (SBR) additive. Through this paper, the AC-60/70 and AC-85/100 penetration grade bitumens were used as base bitumen. Moreover, three liquid ASAs (ASA (1), ASA (2), ASA (3)), PPA (1% by weight of bitumen), SBR (2% by weight of binder), and two types of warm mix additives (3% Sasobit and 0.3% Zycotherm) were used as a mixture modifier. For evaluating the performance behavior of bitumen, the rotational viscosity, Dynamic Shear Rheometer, and Bending Beam Rheometer, Multiple Stress Creep Recovery (MSCR), and linear Amplitude Sweep (LAS) tests were implemented. Moreover, Resilient Modulus (Mr), Indirect Tensile Strength (ITS), dynamic creep, wheel track, and Four-Point Beam Fatigue (FPB) tests were performed to investigate the performance of mixture samples. Based on the outcomes of the MSCR test, the utilization of SBR/PPA additive and ASAs decreased the Jnr value. Among modified binders, the binders modified by ASA (2) have the lowest Jnr value followed by binders modified by ASA (1) and ASA (3). According to the outcomes of LAS test, the utilization of ASAs leads to increase in the fatigue life of the original binder. According to the outcomes, the utilization of WMA additives and ASAs caused the Mr, ITS, rutting resistance, and fatigue life to increase. Among ASAs, the ASA (2) has the greatest influence on enhancing the performance of mixtures. Based on results, Sasobit additive has a better effect than Zycotherm on enhancing the properties of samples.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7666
Author(s):  
Navid Hemmati ◽  
Jihyeon Yun ◽  
Mithil Mazumder ◽  
Moon-Sup Lee ◽  
Soon-Jae Lee

The study describes the laboratory assessment (physical and rheological properties) of the binders (PG 64-22 and PG 76-22) modified with Styrene Butadiene Rubber (SBR), and a comprehensive comparison between these two modified binder types. PG 64-22 and PG 76-22 were used as base binders. Both of the base binders were blended with SBR at four different percentages of content (0%, 4%, 6%, and 8% by the weight of the binder). The base and modified binders were artificially short-term and long-term aged using a rolling thin film oven (RTFO) and pressure aging vessel (PAV) procedures. Superpave binder tests were conducted on the SBR modified binder using rotational viscometer (RV), dynamic shear rheometer (DSR), and bending beam rheometer (BBR). In depth rutting performance was investigated using Multiple Stress Creep Recovery (MSCR). The results of this study indicated that (1) the addition of SBR into both binders increased the viscosity and polymer modified asphalt (PMA) binders observed to have more significant effect on its viscosity property; (2) the higher the SBR content, the better the rutting resistance of the binder and it is observed that the effect is prominent on the control binder; (3) MSCR test results showed that the SBR modified binders improved the binder percentage recovery and found to have a more significant effect on the PG 76-22 binder compared to PG 64-22; and (4) both the control PG 64-22 and PMA PG 76-22 binders resulted in similar trends on the cracking properties and were found to have insignificant effects due to the addition of an SBR modifier.


2020 ◽  
Vol 10 (8) ◽  
pp. 2671
Author(s):  
Sadegh Yeganeh ◽  
Mahmoud Ameri ◽  
Davide Dalmazzo ◽  
Ezio Santagata

The study described in this paper focused on the possible use of waste products coming from the production of styrene–butadiene rubber (SBR) and polybutadiene rubber (PBR), as bitumen modifiers. Modified binders containing these products were prepared in the laboratory with different polymer dosages and were thereafter subjected to the evaluation of empirical and rheological properties. For comparative purposes, the study also considered SBR and PBR products of premium quality. Ageing effects were also taken into account by means of proper laboratory simulations. Obtained results indicated that the two types of polymer (SBR and PBR) have completely different effects on the rheology and expected performance of the resulting modified binders. In particular, while the two polymers showed similar effects in terms of resistance to permanent deformation, the SBR products proved to be superior from the viewpoint of fatigue resistance. However, only minor differences were found when comparing the effects produced by premium quality and waste polymers. As a result of the experimental findings, it was concluded that the use of waste SBR polymers can be an attractive solution for the production of affordable modified binders.


2020 ◽  
Vol 26 (2) ◽  
pp. 159-175
Author(s):  
Mustafa Shakir Mahdi ◽  
Prof. saad Isa Sarsam

Tests were performed on asphalt concrete specimens with (101.6 mm in diameter and 101.6 mm in height), and the results were implemented for calculating permanent deformation and resilient modulus under repeated compressive stress with different levels of stresses (0.068, 0.138 and 0.206) MPa at 40 ºC. Two types of additives namely (carbon black-asphalt) and (SBR-asphalt) were tried as rejuvenators with three percentages of (0.5, 1 and 1.5) % by weight of asphalt cement along with two ratios of AC (1 and 2) % have been implemented as rejuvenator and blended with the reclaimed asphalt concrete. Aged materials were obtained from the site. 100% Reclaimed Asphalt Pavement material from the reclaimed mixture is implemented. A set of (3) specimens were prepared for every mixture; three specimens were tested under (repeated compressive stress) at each level of stress. The objective of this work was to study the effect of two types of additives (Styrene-Butadiene-Rubber (SBR) and carbon black) on the performance of recycled asphalt concrete mixture. It was concluded that the Resilient modulus (Mr) at (0.138 and 0.206) MPa stress level decreases by (14, 22 and 8) % and (22, 34 and 11) for reclaimed and recycle mixtures with (carbon black-asphalt and SBR-asphalt) respectively when compared with that at 0.068 MPa. Permanent deformation for recycled mixtures with (carbon black-asphalt and SBR-asphalt) increased by (65.9, 4.54) %, (146.6, 27.2) % and (79, 5.5) % at level of stresses (0.068, 0.138 and 0.206) MPa respectively when compared to reclaimed mixture.


2004 ◽  
Vol 1 (1) ◽  
pp. 19 ◽  
Author(s):  
H. I. Al-Abdul Wahhab ◽  
I. Abaker

There is a need to improve the performance of asphalt binders to minimize stress cracking that occurs at low temperatures and plastic deformation at high temperatures. Importation of used asphalt-polymers from abroad, leads to an increase in the total construction cost as compared to the cost if the used polymers were of local origin. The main objective of this research was to modify locally produced asphalt. Ten polymers were identified as potential asphalt modifiers based on their physical properties and chemical composition. After preliminary laboratory evaluation for the melting point of these polymers, five polymers were selected for local asphalt modification. In the initial stage, required mixing time was decided based on the relation between shear loss modulus and mixing time .The optimum polymer content was selected based on Superpave binder performance grade specifications.The suitability of improvement was verified through the evaluation of permanent deformation and fatigue behavior of laboratory prepared asphalt concrete mixes. The results indicated that the rheological properties of the modified binders improved significantly with sufficient polymer content (3%). The aging properties of the modified binders were found to be dependent on the type of polymer.The fatigue life and resistance to permanent deformation were significantly improved due to enhanced binder rheological properties.  Thus, local asphalts can be modified using thermoplastic polymers. 


2016 ◽  
Vol 700 ◽  
pp. 238-246 ◽  
Author(s):  
Dewi Sri Jayanti ◽  
Ramadhansyah Putra Jaya ◽  
Siti Aspalaili Mohamd Sharif ◽  
Norhidayah Abdul Hassan ◽  
Siti Nur Amiera Jeffry ◽  
...  

This study investigated the effects of adding various percentages of styrene–butadiene rubber (SBR) on the engineering properties and performance of asphaltic concrete. SBR was added into the mixture at 0%, 1%, 3%, and 5% on a mass-to-mass basis. Conventional bitumen used in this study was 80/100 PEN. The performances of SBR on the asphalt mixture properties were evaluated based on Marshall Stability, abrasion loss, resilient modulus, and dynamic creep test. Results indicated an improvement in the engineering properties and performance with the addition of SBR content. For instance, stability increased by 18.8% as the SBR content increased from 0% to 5%. Dynamic creep stiffness also increased by 46.2%. Similarly, the resilient modulus was also found to increase by approximately 84.6%.


2022 ◽  
Vol 316 ◽  
pp. 126034
Author(s):  
Tiankai Che ◽  
Baofeng Pan ◽  
Yudong Li ◽  
Dongdong Ge ◽  
Dongzhao Jin ◽  
...  

Author(s):  
Felipe F. Camargo ◽  
Kamilla Vasconcelos ◽  
Liedi L. Bernucci

Fatigue cracking and rutting are among the major types of distresses to be considered in flexible pavement design. In this context, the choice of the asphalt binder plays a major role in both the fatigue behavior and permanent deformation resistance of the asphalt mixture. This study was conducted to assess the permanent deformation and fatigue behavior of a field-blended rubber-asphalt (CRMA) and compare the results with typical binders used in Brazil. The neat binder used for modification was also employed as a control and as a base for polymer modification (SBSA). The binders were evaluated using the multiple stress creep and recovery (MSCR) for permanent deformation behavior, and the time sweep (TST) and linear amplitude sweep (LAS) tests for fatigue behavior. Modification of the neat binder resulted in an increase in percentage recovery in the MSCR, whereas the percentage recovery for CRMA was the highest among the three binders at any given temperature. The non-recoverable creep compliance for the CRMA was lower than that exhibited by the neat and SBSA binders for both stress levels for the range of temperatures tested. Binder modification resulted in an improved fatigue behavior compared with the neat binder according to the TST and LAS, whereas rubber modification resulted in the best fatigue behavior. Fatigue life prediction by TST was consistently higher than fatigue life prediction in the LAS test, probably because different criteria were used for determining failure in each test (ranking of the binders remained constant regardless of the criteria used).


1997 ◽  
Vol 70 (2) ◽  
pp. 256-263 ◽  
Author(s):  
Yong-Joon Lee ◽  
Lawrence M. France ◽  
Martin C. Hawley

Abstract Styrene-butadiene rubber (SBR) was used to modify asphalt binders. The rheological and thermo-mechanical properties of the binders were investigated using rotational viscometry, dynamic shear rheometry, and thermal mechanical analysis. The optimum SBR content and mixing procedure were determined based on the rheological properties of the asphalt/SBR blends. The addition of 3–5% (w/w) SBR resulted in enhanced high temperature performance of the binders. The SBR progresses from a dispersed polymer to local networks to a global network with increasing SBR content. This phenomenon is exhibited in rheological properties such as complex modulus and melt viscosity. It is also verified visually by using a Laser Scanning Confocal Microscope. Because of this network formation, the binders showed a large increase in the complex modulus which indicates resistance to rutting.


Sign in / Sign up

Export Citation Format

Share Document