scholarly journals State of the art in tilt-quadrotors, modelling, control and fault recovery

Author(s):  
Ismail Al-Ali ◽  
Yahya Zweiri ◽  
Nawaf AMoosa ◽  
Tarek Taha ◽  
Jorge Dias ◽  
...  

Research studies on quadrotors have recently drawn significant interest from academia and industry. Faults and failures handling are the major weaknesses of conventional quadrotor platforms; therefore, an innovative actuation mechanism was introduced to allow tilting the rotors. Tilting rotors of multirotor platforms provide high dexterity for flying between adjacent obstacles and assist the platforms in dealing with various failure scenarios. This paper reviews the state of the research on tilt-quadrotor platforms. Several platforms, software and hardware architectures, were discussed in the literature. Most of the latest developments were focused on conventional quadrotor modelling, combined with rotor tilting dynamics. On the other hand, controlling such platform was mainly studied using two types of controllers: Feedback Linearisation technique and Control Allocator. Recovery strategy in case of fault or failure has been covered extensively for conventional quadrotors, but very limited known work for tilt-quadrotor. This review concludes that the system dynamic modelling is relatively well covered compared to exploring new control techniques for more stringent requirements. However, recovery strategies as the main advantage of tilt-quadrotor platforms are not explored extensively and require more research attention.

Author(s):  
Steven Y. Liang ◽  
Rogelio L. Hecker ◽  
Robert G. Landers

Automation at the process level for machining operations and machine tools has been a focus of research attention in both academia and industry alike for several decades. Research in this area has carried strong expectations in the context of increased productivity, improved part quality, reduced costs, and relaxed part design constraints. The basis for these expectations is two-fold. First, machining process automation, if exercised strategically and advantageously, can perform consistently for large batch production or flexibly for small batch jobs. Secondly, process automation can be set up to autonomously tune the machine parameters (feed, speed, depth of cut, etc.) in pursuit of desirable performance (tolerance, finish, cycle time, etc.), thereby bridging the gap between product design and process planning while reaching beyond the human operators’ capability. The success of manufacturing process automation hinges primarily on the effectiveness of process monitoring and control systems. This paper reviews the evolution and the state of the art of machining process monitoring and control technologies. Key issues to be presented include sensor techniques, control techniques, hardware availability, and implementation examples. Also to be reviewed are the benefits of the systems and the reasons for their delayed realization in many of today’s industrial application domains.


2013 ◽  
Vol 432 ◽  
pp. 421-426
Author(s):  
Dmitry Baimel ◽  
Saad Tapuchi

The paper presents a technological review of modern motion control systems. Existing solutions are discussed and analyzed based on their topologies, limitations, and control techniques. A special attention is given to the servo control and variable frequency control systems, their comparison and applications. The paper also presents future trends in motion control systems.


2018 ◽  
Vol 4 (5) ◽  
pp. 7
Author(s):  
Shivam Dwivedi ◽  
Prof. Vikas Gupta

As the four-wheel steering (4WS) system has great potentials, many researchers' attention was attracted to this technique and active research was made. As a result, passenger cars equipped with 4WS systems were put on the market a few years ago. This report tries to identify the essential elements of the 4WS technology in terms of vehicle dynamics and control techniques. Based on the findings of this investigation, the report gives a mechanism of electronically controlling the steering system depending on the variable pressure applied on it. This enhances the controlling and smoothens the operation of steering mechanism.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huoyin Zhang ◽  
Shiyunmeng Zhang ◽  
Jiachen Lu ◽  
Yi Lei ◽  
Hong Li

AbstractPrevious studies in humans have shown that brain regions activating social exclusion overlap with those related to attention. However, in the context of social exclusion, how does behavioral monitoring affect individual behavior? In this study, we used the Cyberball game to induce the social exclusion effect in a group of participants. To explore the influence of social exclusion on the attention network, we administered the Attention Network Test (ANT) and compared results for the three subsystems of the attention network (orienting, alerting, and executive control) between exclusion (N = 60) and inclusion (N = 60) groups. Compared with the inclusion group, the exclusion group showed shorter overall response time and better executive control performance, but no significant differences in orienting or alerting. The excluded individuals showed a stronger ability to detect and control conflicts. It appears that social exclusion does not always exert a negative influence on individuals. In future research, attention to network can be used as indicators of social exclusion. This may further reveal how social exclusion affects individuals' psychosomatic mechanisms.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 400 ◽  
Author(s):  
Zelin Nie ◽  
Feng Gao ◽  
Chao-Bo Yan

Reducing the energy consumption of the heating, ventilation, and air conditioning (HVAC) systems while ensuring users’ comfort is of both academic and practical significance. However, the-state-of-the-art of the optimization model of the HVAC system is that either the thermal dynamic model is simplified as a linear model, or the optimization model of the HVAC system is single-timescale, which leads to heavy computation burden. To balance the practicality and the overhead of computation, in this paper, a multi-timescale bilinear model of HVAC systems is proposed. To guarantee the consistency of models in different timescales, the fast timescale model is built first with a bilinear form, and then the slow timescale model is induced from the fast one, specifically, with a bilinear-like form. After a simplified replacement made for the bilinear-like part, this problem can be solved by a convexification method. Extensive numerical experiments have been conducted to validate the effectiveness of this model.


Sign in / Sign up

Export Citation Format

Share Document