Analysis and optimization of the surface waviness in the single-point incremental sheet metal forming

Author(s):  
Mohammad H Shojaeefard ◽  
Abolfazl Khalkhali ◽  
Shahaboddin Shahbaz

Presence of waviness in the incremental sheet forming has a detrimental effect on the surface quality of parts, especially on the appearance of those covered with paint. In this paper, the effects of tool diameter, feed rate, spindle speed, and vertical step have been studied on the surface waviness using an innovative method. The proposed method is based on the root mean square deviation of the height of the points located on the wavy surface. In this way, some points are selected on the formed wall and their coordinates are measured using a coordinate measuring machine. Taguchi design of experiments and the analysis of variance are used for studying and optimizing the effects of the four process parameters and their combinations to minimize the waviness of the formed wall. The results show that by reducing the vertical step and increasing the tool diameter, the waviness is decreased. It is also found that the feed rate and the spindle speed have little effect on the waviness. Additionally, from a confirmation test, the results illustrate that the Taguchi method and the analysis of variance provide an efficient and effective method for determination of the optimum level of each process parameter to have the minimum surface waviness.

2016 ◽  
Vol 19 (3) ◽  
Author(s):  
CRINA RADU ◽  
EUGEN HERGHELEGIU ◽  
ION CRISTEA ◽  
CAROL SCHNAKOVSZKY

<p>The aim of the current work was to analyse the influence of the process parameters (tool diameter, size of the vertical step of tool, feed rate and spindle speed) on the quality of the processed surface, expressed in terms of roughness and macrostructure in the case of parts processed by single point incremental forming. The analysis was made on A1050 aluminium metal sheets. The obtained results revealed that the process parameters influence differently the surface quality, the worst influence being exerted by the increase of the vertical step of tool. </p>


Author(s):  
Mostafa A. Abdullah  , Ahmed B. Abdulwahhab   ,   Atheer R.

In the curents study aimed to assess the effects of cutting conditions  (spindle speed, feed rate, tool diameter) parameters as input impact on material removal rate (MRR) and surface roughness (Ra) as output of steel (AISI 1015). A number of drilling experiments were conducted using the L9 orthogonal array on conventional drilling machine with use feed rate (0.038,0.076,0.203) mm/rev and spindle speed (132,550,930) rpm and tool diameter (11,15,20) mm HSS twist drills under dry cutting conditions. Analysis of variance (ANOVA) was employed to determine the most significant control factors affecting on surface roughness and MRR. The result shown the tool diameter the important factor effect with (64.08%) and (76.12%) on MRR and surface roughness respectively.


BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 3266-3277
Author(s):  
Ümmü K. İşleyen ◽  
Mehmet Karamanoğlu

This paper examined the effect of machining parameters on surface roughness of medium density fiberboard (MDF) machined using a computer numerical control (CNC) router. The machining parameters such as spindle speed, feed rate, depth of cut, and tool diameter were examined for milling. The experiments were conducted at two levels of spindle speeds, four levels of feed rates, two levels of tool diameters, and two levels of axial depths of cut. The surface roughness values of MDF grooved by CNC were measured with stylus-type equipment. Statistical methods were used to determine the effectiveness of the machining parameters on surface roughness. The influence of each milling parameter affecting surface roughness was analyzed using analysis of variance (ANOVA). The significant machining parameters affecting the surface roughness were the feed rate, spindle speed, and tool diameter (p < 0.05). There was no significant influence of axial depth of cut on the surface roughness. The surface roughness decreased with increasing spindle speed and decreasing feed rate. The value of surface roughness increased with the increase of tool diameter.


2012 ◽  
Vol 622-623 ◽  
pp. 1285-1289 ◽  
Author(s):  
T.N. Valarmathi ◽  
K. Palanikumar ◽  
S. Sekar

Medium density fiberboard (MDF) is an engineered wood generally used in wooden industries. Drilling is the most frequently used machining operation in the assembly of furniture working. During drilling cutting forces are developed. These cutting forces are affecting the surface qualities and also causes delamination damage. The cutting conditions and the process parameters play an important role in controlling the cutting forces. The objective of this work is to study the influence of cutting parameters such as spindle speed, feed rate and point angle to reduce the cutting forces developed during drilling. Drilling tests are conducted using Taguchi design of experiments. The mathematical model is developed using response surface methodology (RSM) to evaluate the influence of spindle speed, feed rate and point angle on thrust force. It is seen that high spindle speed with low feed rate combination gives better results in drilling of MDF panels.


Author(s):  
Zülküf Demir ◽  
Cebeli Özek ◽  
Muhammed Bal

In thermal friction drilling (TFD) operations, the geometrical dimensions of bushing shape, height and wall thickness are the most vital consequences, due to increasing the connecting length and strength. In this paper, AA7075-T651 aluminum alloys with 2, 4, 6, 8, and 10 mm in thicknesses were drilled with TFD process in order to investigate the density, the volume ratio, and height and wall thickness of the bushings. The experiments were conducted at constant spindle speed and feed rate conditions by using HSS conical tools of 5, 10, 15, and 20 mm in diameters. It was experimentally found that the bushing height and the wall thickness were tendency of increase linearly with increasing both material thickness and tool diameter. The effect of tool diameter was found to have much of influence on the measured values than the thickness of the drilled material. The density of the bushing was changed inconsiderably. Approximately 70-75 % percentages of the evacuated material composed the bushing shape, in TFD operations.


2020 ◽  
Vol 402 ◽  
pp. 108-114
Author(s):  
Mohd Iqbal ◽  
Firmansyah ◽  
Muhammad Tadjuddin ◽  
Laxman B. Abhang

The drilling process has been mostly used in composite panel machining to be a final product. It becomes a critical process when the composite product requires a high hole precision for the purpose of assembly and quality standard. Machining Kevlar composite is a difficult task due its hardness, fiber layer bounding and fiber orientation. The cutting condition needs to be controlled carefully to minimize the vibration, cutting temperature and hole delamination. This paper discusses the investigation of hole delamination in drilling Kevlar composite panel. The twist drill type of High-Speed Steel (HSS) drilling tool with 12 mm diameter was used to drill a 4 mm thick Kevlar composite panel. Three levels of spindle speed (1000 rpm, 1400 rpm and 2000 rpm) and three levels of feed rate (130 mm/min, 160 mm/min and 180 mm/min) were selected as the configuration of cutting condition. The hole diameter was measured and was compared to the drill tool diameter. The result of the experiment shows that the cutting condition gave significant effect to the drill hole delamination factor. The highest delamination factor was 1.36 and achieved by drilling condition with spindle speed of 1000 rpm and feed rate of 160 mm/min. The lowest delamination factor was 1.161 and achieved by drilling condition with spindle speed of 2000 rpm and feed rate of 130 mm/min.


2020 ◽  
Vol 14 (1) ◽  
pp. 6295-6303
Author(s):  
Zaleha Mustafa ◽  
N. H. Idrus ◽  
A B. Mohd Hadzley ◽  
D. Sivakumar ◽  
M. Y. Norazlina ◽  
...  

This paper presents an investigation on the influence of the drilling parameters such as feed rate, spindle speed and drill tool diameter onto the delamination factor of the jute reinforced unsaturated polyester composite. Natural fibre based composite are mostly used for commodity application and often subjected to drilling during applications and may generate delamination of drilled holes on the workpiece. The composite was fabricated using woven jute fibre via vacuum bagging method followed a high temperature curing using hot press. The fibre was kept at 40 vol. %. The main effect and the interaction between the specified factors of feed rate (20-100mm/min), spindle speed (500-1500 rpm) and drill tool diameter (4-8 mm) with delamination factor as corresponding respond was structured via the Response Surface Methodology (RSM) based on three-level Box-Behnken design of experiment and the ANOVA. The levels of importance of the process parameters on flexural properties are determined by using Analysis of Variance (ANOVA). The optimised drilling process parameters obtained as 24.38 mm/min of feed rate, 1146.14 rpm of spindle speed and 5.51 mm drill tool diameter achieved the most minimal delamination factor. The feed rate and spindle speed were perceived as the most influential drilling parameters on the delamination factor of the jute reinforced unsaturated polyester composite.


2019 ◽  
Vol 12 (3) ◽  
pp. 103-112
Author(s):  
Nareen Hafidh Obaeed

A wonderful unique research developments in modeling surface roughness and optimization of the predominant parameters to get a surface finish of desired level since only suitable selection of cutting parameters can get a better surface finish, so the objective of this work is to study the milling process parameters which include tool diameter, feed rate, spindle speed, and depth of cut resulting in optimal values of the surface roughness during machining AL-alloy 7024. The machining operation implemented on XK7124 3-axis CNC milling machine. The effects of the selected parameters on the chosen characteristics have been accomplished using Taguchi’s parameter design approach. The parameters considered are – depth of cut with two levels (0.2, 0.5 mm), tool diameter with two levels (6, 8 mm), spindle speed with two levels (1000, 2500 rpm), and finally feed rate with two levels (200, 500 mm/min). Analysis of the results showed that the optimal settings for low values of surface roughness are large tool diameter (8 mm), high spindle speed (2500 r.p.m), low feed rate (200 mm/min) and high depth of cut (0.5 mm). Response Table for mean of surface roughness showed that tool diameter has the most effected factors (rank one) followed by feed rate (rank two) then depth of cut which is the third effected factors and finally spindle speed with the less effected factors of surface roughness (rank four).


2021 ◽  
Vol 105 ◽  
pp. 68-76
Author(s):  
R. Pramod ◽  
S. Basavarajappa ◽  
G.B. Veeresh Kumar

The utilization of nanoparticle filled composite materials in many different engineering fields has undergone a tremendous increase. Accordingly, the need for accurate machining of composites has increased enormously. In the present study, an attempt has been made to assess the factors influencing surface roughness on the machining of nanocomposites and base composites. The Taguchi L16 experimental design concept has been used for experimentation. The drilling experiments were conducted considering spindle speed, drill tool diameter, and feed rate as machining parameters. The empirical model was developed based on the input parameters. Analysis of Variance (ANOVA) established the relation between predicted and experimental values. The regression model was found to be within the level of confidence with greater accuracy indicated by R2 value. The addition of Nanoclay and Graphene as fillers in the matrix improved the surface roughness of the hole. Feed rate and spindle speed were found to be the significant factors of machining and Graphene reinforced composites had better surface finish.


2017 ◽  
Vol 882 ◽  
pp. 3-7
Author(s):  
Mohammad Yeakub Ali ◽  
Farhana Sulaiman ◽  
Asfana Banu ◽  
Mohamed Abdul Rahman ◽  
Muataz Hazza Faizi Al Hazza

Cutting fluid plays an important role in machining processes to achieve dimensional accuracy, reduce tool wear, and improve tool life. Use of flood cooling conventionally used in machining is not cost effective and consumption of huge amount of cutting fluids is not health and environmental friendly. Therefore, one of the alternatives is to use minimum quantity of lubrication (MQL) in machining process. MQL is eco-friendly and has economical advantage on manufacturing cost. Study of the effects of MQL on burrs and aspect ratio should be carried out because burrs and aspect ratio are important issues in microdrilled parts used as microfluidic channels in bio-medical applications. In case of micromachining, flood cooling is not recommended to avoid any possible damage of the microstructures. As a result alternative solutions are sought. This paper investigates and compares burrs and aspect ratio in dry microdrilling and microdrilling with the presence of MQL on aluminium alloy 1100. The relationship among tool diameter, feed rate, and spindle speed on the area affected by burrs and drilled hole aspect ratio are analysed. The values of aspect ratio for both conditions show that there is slight improvement on aspect ratio in MQL over dry drilling. MQL has significant influence on affected area by burrs. It is observed that low spindle speed, high feed rate, and bigger drill diameter should be used along with MQL to reduce burrs.


Sign in / Sign up

Export Citation Format

Share Document