Thrust Force Studies in Drilling of Medium Density Fiberboard Panels

2012 ◽  
Vol 622-623 ◽  
pp. 1285-1289 ◽  
Author(s):  
T.N. Valarmathi ◽  
K. Palanikumar ◽  
S. Sekar

Medium density fiberboard (MDF) is an engineered wood generally used in wooden industries. Drilling is the most frequently used machining operation in the assembly of furniture working. During drilling cutting forces are developed. These cutting forces are affecting the surface qualities and also causes delamination damage. The cutting conditions and the process parameters play an important role in controlling the cutting forces. The objective of this work is to study the influence of cutting parameters such as spindle speed, feed rate and point angle to reduce the cutting forces developed during drilling. Drilling tests are conducted using Taguchi design of experiments. The mathematical model is developed using response surface methodology (RSM) to evaluate the influence of spindle speed, feed rate and point angle on thrust force. It is seen that high spindle speed with low feed rate combination gives better results in drilling of MDF panels.

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 854
Author(s):  
Muhammad Aamir ◽  
Khaled Giasin ◽  
Majid Tolouei-Rad ◽  
Israr Ud Din ◽  
Muhammad Imran Hanif ◽  
...  

Drilling is an important machining process in various manufacturing industries. High-quality holes are possible with the proper selection of tools and cutting parameters. This study investigates the effect of spindle speed, feed rate, and drill diameter on the generated thrust force, the formation of chips, post-machining tool condition, and hole quality. The hole surface defects and the top and bottom edge conditions were also investigated using scan electron microscopy. The drilling tests were carried out on AA2024-T3 alloy under a dry drilling environment using 6 and 10 mm uncoated carbide tools. Analysis of Variance was employed to further evaluate the influence of the input parameters on the analysed outputs. The results show that the thrust force was highly influenced by feed rate and drill size. The high spindle speed resulted in higher surface roughness, while the increase in the feed rate produced more burrs around the edges of the holes. Additionally, the burrs formed at the exit side of holes were larger than those formed at the entry side. The high drill size resulted in greater chip thickness and an increased built-up edge on the cutting tools.


2011 ◽  
Vol 188 ◽  
pp. 429-434 ◽  
Author(s):  
L.P. Yang ◽  
Li Xin Huang ◽  
Cheng Yong Wang ◽  
L.J. Zheng ◽  
Ping Ma ◽  
...  

Supported holes of Printed circuit board (PCB) are drilled with two different drill bits. Drilling force (thrust force and torque) and chip morphology are examined at different cutting parameters, and the effects of the two drills are discussed. The results indicate that the drilling force and chip morphology are affected by the feed rate, spindle speed and drill shape. Thrust force increases with the increasing feed rate, and decreases with the increasing spindle speed. Optimization of drill geometry can reduce the thrust force significantly, and is effective in chip breaking which can improve the chip evacuation during the drilling process.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1143-1153
Author(s):  
Yousif K. Shounia ◽  
Tahseen F. Abbas ◽  
Raed R. Shwaish

This research presents a model for prediction surface roughness in terms of process parameters in turning aluminum alloy 1200. The geometry to be machined has four rotational features: straight, taper, convex and concave, while a design of experiments was created through the Taguchi L25 orthogonal array experiments in minitab17 three factors with five Levels depth of cut (0.04, 0.06, 0.08, 0.10 and 0.12) mm, spindle speed (1200, 1400, 1600, 1800 and 2000) r.p.m and feed rate (60, 70, 80, 90 and 100) mm/min. A multiple non-linear regression model has been used which is a set of statistical extrapolation processes to estimate the relationships input variables and output which the surface roughness which prediction outside the range of the data. According to the non-linear regression model, the optimum surface roughness can be obtained at 1800 rpm of spindle speed, feed-rate of 80 mm/min and depth of cut 0.04 mm then the best surface roughness comes out to be 0.04 μm at tapper feature at depth of cut 0.01 mm and same spindle speed and feed rate pervious which gives the error of 3.23% at evolution equation.


2017 ◽  
Vol 748 ◽  
pp. 254-258
Author(s):  
Chang Yi Liu ◽  
Bai Shou Zhang ◽  
Suman Shrestha

Drilling experiments of titanium alloy Ti6Al4V were conducted. Taking the speed and feed as the process variables, a set of experimental cutting forces are obtained and compared. From the experimental results it is concluded that within the experimental extent the thrust force and torque of drilling process rises with the feed rate. The lower spindle speed resulted in the greater amount of thrust. Feed rates have greater influence on the thrust force than the spindle speed. The combination of greater feed rate and lower spindle speed results in the maximum amount of thrust. However, combination of greater feed rate and spindle speed resulted in maximum amount of torque.


Author(s):  
Amir Mahyar Khorasani ◽  
Ian Gibson ◽  
Moshe Goldberg ◽  
Guy Littlefair

Additive manufacturing (AM), partly due to its compatibility with computer-aided design (CAD) and fabrication of intricate shapes, is an emerging production process. Postprocessing, such as machining, is particularly necessary for metal AM due to the lack of surface quality for as-built parts being a problem when using as a production process. In this paper, a predictive model for cutting forces has been developed by using artificial neural networks (ANNs). The effect of tool path and cutting condition, including cutting speed, feed rate, machining allowance, and scallop height, on the generated force during machining of spherical components such as prosthetic acetabular shell was investigated. Also, different annealing processes like stress relieving, mill annealing and β annealing have been carried out on the samples to better understand the effect of brittleness, strength, and hardness on machining. The results of this study showed that ANN can accurately apply to model cutting force when using ball nose cutters. Scallop height has the highest impact on cutting forces followed by spindle speed, finishing allowance, heat treatment/annealing temperature, tool path, and feed rate. The results illustrate that using linear tool path and increasing annealing temperature can result in lower cutting force. Higher cutting force was observed with greater scallop height and feed rate while for higher finishing allowance, cutting forces decreased. For spindle speed, the trend of cutting force was increasing up to a critical point and then decreasing due to thermal softening.


Author(s):  
İsmail Kırbaş ◽  
Musa Peker ◽  
Gültekin Basmacı ◽  
Mustafa Ay

In this chapter, the impact of cutting parameters (depth of cut, cutting speed, feed, flow, rake angle, lead angle) on cutting forces in the turning process with regard to ASTM B574 (Hastelloy C-22) material has been investigated. Variance analysis has been applied in order to determine the factors affecting the cutting forces. The optimization of the parameters affecting the surface roughness has been obtained using response surface methodology (RSM) based on the Taguchi orthogonal experimental design. The accuracy of the developed models required for the estimation of the force values (Fx, Fy, Fz) is quite successful. In this study, where the R2 value has been used as the criterion/measure, accuracy values of 93.35%, 95.03%, and 95.09% have been achieved for Fx, Fy, and Fz, respectively. As a result of the ANOVA analysis, the most effective parameters for Fx at a 95% confidence interval are depth of cut, feed rate, flow, and rake angle. The most effective parameter for Fy is depth of cut, while the most effective parameters for Fz are depth of cut, feed rate, and flow, respectively.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1014 ◽  
Author(s):  
Sánchez Hernández ◽  
Trujillo Vilches ◽  
Bermudo Gamboa ◽  
Sevilla Hurtado

In this work, the analysis of the cutting speed and feed rate influence on tool wear and cutting forces in Ti6Al4V alloy dry machining is presented. The study has been focused on the machining in a transient state. The tool wear mechanisms, tool wear intensity and cutting forces evolution have been analyzed as a function of the cutting parameters. Experimental results show that the main cutting force amplitude exhibits a general trend to increase with both cutting parameters. Crater wear was more evident at high cutting speeds, whereas flank wear was present on the whole interval of the cutting parameters analyzed. Furthermore, the cutting speed shows a slightly higher influence on crater wear and the feed rate shows a higher influence on flank wear. Finally, several experimental parametric models have been obtained. These models allow predicting the evolution of crater and flank tool wear, as well as the cutting forces, as a function of the cutting parameters. Additionally, a model that allows monitoring the tool wear on the machining transient state as a function of the main cutting force amplitude has been developed.


2016 ◽  
Vol 1136 ◽  
pp. 9-14
Author(s):  
Yun Guang Zhou ◽  
Ya Dong Gong ◽  
Yang Sun ◽  
Zhong Xiao Zhu ◽  
Qi Gao

This paper uses micro-grinding tool with 500# grains and 0.9 mm diameter to grind nickel-based superalloy Inconel600 through three factors(grinding depth, feed rate, spindle speed ) at three levels orthogonal grinding experiment in mesoscopic scale. Then according to the range analysis of surface roughness, the primary and secondary influencial factors are found; the micro grinding parameters are optimized ,the results show: the influence of the feed rate(vf)is the biggest, followed by the spindle speed(n), the grinding depth(ap) is minimal, when n=50kr/min, vf=100μm/s, ap=6μm, the grinding surface roughness is minimum: Ra=579nm; finally , the regression mathematical model of micro grinding surface roughness is established, the relative error of the calculated value and experimental measurements is low, showing that this regression mathematical model is accurate and effective. This study provides a theoretical basis for the micro grinding parameters and surface quality control of nickel-based superally.


Author(s):  
Mohammad H Shojaeefard ◽  
Abolfazl Khalkhali ◽  
Shahaboddin Shahbaz

Presence of waviness in the incremental sheet forming has a detrimental effect on the surface quality of parts, especially on the appearance of those covered with paint. In this paper, the effects of tool diameter, feed rate, spindle speed, and vertical step have been studied on the surface waviness using an innovative method. The proposed method is based on the root mean square deviation of the height of the points located on the wavy surface. In this way, some points are selected on the formed wall and their coordinates are measured using a coordinate measuring machine. Taguchi design of experiments and the analysis of variance are used for studying and optimizing the effects of the four process parameters and their combinations to minimize the waviness of the formed wall. The results show that by reducing the vertical step and increasing the tool diameter, the waviness is decreased. It is also found that the feed rate and the spindle speed have little effect on the waviness. Additionally, from a confirmation test, the results illustrate that the Taguchi method and the analysis of variance provide an efficient and effective method for determination of the optimum level of each process parameter to have the minimum surface waviness.


Author(s):  
Xue Zuo ◽  
Hua Zhu ◽  
Yuankai Zhou ◽  
Jianhua Yang

Cutting parameters and material properties have important effects on the quality of milled surface, which can be characterized by fractal dimension and surface roughness. The relationships between two surface parameters (surface roughness and fractal dimension) and material hardness, elongation, spindle speed and feed rate were investigated, respectively, in this study. Four carbon steels, that is, AISI 1020, Gr 50, 1045 and 1566, were milled with five spindle speeds and four feed rates on a computer numerical control machine. The surface topographies were measured with a three-dimensional profiler. The surface profiles were obtained by re-sampling the data points on the surface topography in the measurement direction. The surface roughness and fractal dimension were calculated from the two-dimensional profiles, where the fractal dimension was obtained by the root-mean-square method. The results showed that for specific spindle speed and feed rate, the roughness of the milled surface decreased with the workpiece hardness, whereas the elongation and fractal dimension increased with the hardness. Based on the material hardness and elongation, spindle speed and feed rate, empirical formulae were established to quantitatively estimate the surface roughness and fractal dimension. Moreover, the spindle speed and feed rate can be easily calculated from the empirical formulae to achieve a surface with the desired surface roughness and fractal dimension. The empirical formulae have been demonstrated with the experiments and were shown to be applicable in estimating the surface roughness and fractal dimension for all carbon steels in end milling. The results are instructive for the fractal dimension estimation of the machined surfaces of carbon steel, which has not been previously studied.


Sign in / Sign up

Export Citation Format

Share Document