Evaluation of the cutting forces, the surface roughness, and the tool wear characteristics during machining of cobalt-based superalloy Haynes 188 with ceramic cutting tool

Author(s):  
Abdullah Altin

In this research, we had studied the sensitivity for machining of cobalt-based superalloy Haynes 188 with ceramic cutting tool. The investigation had focused on the effects of the cutting speed, on the cutting forces, and on the surface roughness based on Taguchi’s experimental design. The effects of machining parameters were determined using Taguchi’s L27 orthogonal array. The signal-to-noise ratio was calculated for the average of surface roughness and the cutting forces, and the smaller were used to determine the optimal cutting conditions. The analysis of variance and the signal-to-noise ratio had effects on the parameters on both surface roughness and cutting. Three different types of cutting tools had been used in the experiment, namely KYON 4300, KYS 25, and KYS 30. The cutting force of Fz was considered to be the main cutting force. Depending on the material which had been used as cutting tool, the Fz had the lowest cutting speed and the lowest surface roughness with the KYS25 ceramic tool. The cutting force and the surface roughness of KYON 4300 cutting tool had shown better performance than other cutting tools. The flank wear and notch were found to be more effective in the experiments. The long chips were removed at low and medium cutting speeds, while the sawdust with one edge and narrow pitch at high cutting speeds was obtained.

2009 ◽  
Vol 23 (06n07) ◽  
pp. 1796-1802 ◽  
Author(s):  
A. G. JAHARAH ◽  
C. H. CHE HASSAN ◽  
M. J. GHAZALI ◽  
A. B. SULONG ◽  
M. Z. OMAR ◽  
...  

This paper presents the performance of uncoated carbide cutting tool when machining cast iron in dry cutting conditions. Experiments were conducted at various cutting speeds, feed rates, and depths of cut according to Taguchi method design of experiment using a standard orthogonal array L 9(34). The effects of cutting speeds (100-146 m/min), feed rates (0.20-0.35 mm/tooth) and depths of cut (1.0-2.0 mm) on the tool life, surface roughness and cutting forces were evaluated using ANOVA. Results showed that the effects of cutting speed, depth of cut and the feed rate were similar affecting the failure of the carbide cutting tools within the range of tested machining parameters. The contribution of cutting speed, feed rate, and depth of cut in controlling the tool life were 32.12%, 38.56% and 29.32% respectively. Whereas, the cutting speed was the main factor influencing the average surface roughness (Ra) value followed by feed rate. These factors contribute 60.53% and 35.59% respectively to the Ra value. On the other hand, cutting forces generated were greatly influenced by the depth of cut (66.52%) and the feed rate (32.6%). Cutting speed was found insignificant in controlling the generated cutting forces.


1984 ◽  
Vol 30 (104) ◽  
pp. 77-81 ◽  
Author(s):  
D.K. Lieu ◽  
C.D. Mote

AbstractThe cutting force components and the cutting moment on the cutting tool were measured during the orthogonal machining of ice with cutting tools inclined at negative rake angles. The variables included the cutting depth (< 1 mm), the cutting speed (0.01 ms−1to 1 ms−1), and the rake angles (–15° to –60°). Results of the experiments showed that the cutting force components were approximately independent of cutting speed. The resultant cutting force on the tool was in a direction approximately normal to the cutting face of the tool. The magnitude of the resultant force increased with the negative rake angle. Photographs of ice-chip formation revealed continuous and segmented chips at different cutting depths.


2021 ◽  
Author(s):  
Hüseyin Gürbüz ◽  
Şehmus Baday

Abstract Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02-0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated.


2016 ◽  
Vol 23 (6) ◽  
pp. 743-750 ◽  
Author(s):  
Ergün Ekici ◽  
Mahmut Gülesin

AbstractIn this study, the effects of the particle reinforcement ratio on cutting forces and surface roughness were investigated when milling particle-reinforced metal matrix composite (MMCp) produced by hot pressing with different cutting tools. Alumix 123 alloy as the matrix material and B4C particles with an average size of 27 μm and 5%, 10% and 15% ratio as reinforcing elements were used for the manufacture of composite materials. The experiments were carried out in dry cutting conditions with four different cutting speeds, constant feed rate and depth of cut. Changes depending on the increased reinforcement ratio in cutting forces and surface roughness values were investigated; the effects of 10% B4C reinforced composite on tool wear were also examined. It was observed that cutting forces increased with the increase in cutting speed and particle ratio with carbide cutting tools, and it was seen that the cutting forces on the cutting tools decreased when cutting speed decreased and the cutting forces increased as the reinforcement ratios increased. In addition, with increasing the cutting speed, the surface roughness of the machined surfaces of composite samples increased with the carbide tools, while the cubic boron nitride (CBN) tools have the opposite effect. While it was seen that flank and crater wear occurred on the cemented carbide cutting tools, abrasive, adhesive and other wear mechanism tools in addition to the main wear mechanism, no remarkable flank and crater wear occurred on CBN cutting tools.


2020 ◽  
Vol 17 (2) ◽  
pp. 961-966
Author(s):  
Allina Abdullah ◽  
Afiqah Azman ◽  
B. M. Khirulrizwan

This research outlines an experimental study to determine the optimum parameter of cutting tool for the best surface roughness (Ra) of Aluminum Alloy (AA) 6063. For the experiment in this research, cutting parameters such as cutting speed, depth of cut and feed rate are used to identify the effect of both cutting tools which are tungsten carbide and cermet towards the surface roughness (Ra) of material AA6063. The machining operation involved to cut the material is turning process by using Computer Numerical Control (CNC) Lathe machine. The experimental design was designed by Full Factorial. The experiment that had been conducted by the researcher is 33 with 2 replications. The total number of the experiments that had been run is 54 runs for each cutting tool. Thus, the total number of experiments for both cutting tools is 108 runs. ANOVA analysis had been analyzed to identify the significant factor that affect the Ra result. The significant factors that affect the Ra result of AA6063 are feed rate and cutting speed. The researcher used main effect plot to determine the factor that most influenced the surface roughness of AA6063, the optimum condition of surface roughness and the optimum parameter of cutting tool. The factor that most influenced the surface roughness of AA6063 is feed rate. The optimum condition of surface roughness is at the feed rate of 0.05 mm/rev, cutting speed of 600 rpm and depth of cut of 0.10 mm. While the optimum parameter of cutting tool is cermet insert with the lowest value of surface roughness (Ra) result which is 0.650 μm.


Author(s):  
Şakir Yazman ◽  
Ahmet Akdemir ◽  
Mesut Uyaner ◽  
Barış Bakırcıoğlu

In this study, chip formation mechanism during the machining of austempered ferritic DI and the effect of the emerging chip morphology on such machining properties as surface roughness and cutting forces has been scrutinized. After austenitizing at 900 °C for 90 min, DI specimens were austempered in a salt bath at 380 °C for 90 min. Chip roots were produced by using a quick stop device during the machining of austempered specimens in different cutting speeds. The metallographies of these specimens were performed and chip morphologies were examined. The fact that the cutting speed increased led to a decrease in built-up edge formation. Depending on this fact, it was detected that the change in built-up edge thickness substantially affected the surface roughness and cutting forces. It was also detected that during the machining, with the effect of cutting forces and stress, spheroidal graphites were broken off in the chip and lost their sphericity and so that the chip became fragile and unstable and grafites here displayed a lubricant feature.


2013 ◽  
Vol 275-277 ◽  
pp. 2230-2236 ◽  
Author(s):  
Anton Panda ◽  
Ján Duplák ◽  
Jozef Jurko ◽  
Marcel Behún

Durability of the cutting tools is very complex process that is influenced by more factors. To the Identify these factors is necessary execute many experiments. The technical science defines the basic method for determining durability of the cutting tool according to results and knowledge F. W. Taylor. The Literature from renowned authors indicates that durability of the cutting tool is defined on the base of T-vc dependence. T-vc dependence like a elementary durability dependence was described according to Taylor´s graphics dependence VB=f(s) for different cutting speeds in 1906. From this theory were later derived others theories, that became the basis of theories durability of cutting wedge for the different cutting materials. For the durability identification of the cutting tool are in technical practice used two basic tests. The First is the short-term durability test and second is machining long-term test method. Both these tests have some advantages and some disadvantages that are described in Introduction of this paper. This paper describes how to create and analytically express new durability dependence for ceramic cutting tool on the base of vc-VB dependence. This dependence consists from vc - cutting speed and VB - criterion of blunting. The whole procedure and its analytical expression is the subject of this paper.


Author(s):  
Babatunde Olayinka Oyefeso ◽  
Akintunde Akintola ◽  
Monisola Grace Afolabi ◽  
Clement Adesoji Ogunlade ◽  
Oluwaseyi Kayode Fadele ◽  
...  

This study investigated the influence of the moisture content and speed on the cutting force and energy of tannia cormels using the response surface methodology (RSM). The moisture content and cutting speed were varied over five levels each [95.79, 113.68, 136.68, 168.42, 242.11% moisture content (dry basis) and 10, 15, 20, 25, 30 mm×min<sup>–1</sup>, respectively]. The highest and lowest cutting forces were 114.09 and 63.99 N at the corresponding moisture contents of 168.42 and 113.68% and at cutting speeds of 10 and 20 mm×min<sup>–1</sup>, respectively. The highest and lowest cutting energies of 0.92 and 0.49 J were both obtained at a 136.68% moisture content, at the 10 and 20 mm×min<sup>–1</sup> cutting speeds, respectively. The regression models for predicting the cutting force and energy as a function of the cutting speed and moisture content showed that there was no linear relationship between the investigated properties and the independent variables considered which could be attributed to the non-homogeneous nature of tannia cormels. The optimum cutting force and energy were 72.89 N and 0.60 J, respectively, at a 95.79% moisture content and a 22.33 mm×min<sup>–1 </sup>speed with a desirability of 0.80. These findings could serve as a guide for the development of chipping and cutting machines for tannia cormels.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Harun Gokce

Stainless steels with unique corrosion resistance are used in applications with a wide range of fields, especially in the medical, food, and chemical sectors, to maritime and nuclear power plants. The low heat conduction coefficient and the high mechanical properties make the workability of stainless steel materials difficult and cause these materials to be in the class of hard-to-process materials. In this study, suitable cutting tools and cutting parameters were determined by the Taguchi method taking surface roughness and cutting tool wear into milling of Custom 450 martensitic stainless steel. Four different carbide cutting tools, with 40, 80, 120, and 160 m/min cutting speeds and 0.05, 0.1, 0.15, and 0.2 mm/rev feed rates, were selected as cutting parameters for the experiments. Surface roughness values and cutting tool wear amount were determined as a result of the empirical studies. ANOVA was performed to determine the significance levels of the cutting parameters on the measured values. According to ANOVA, while the most effective cutting parameter on surface roughness was the feed rate (% 50.38), the cutting speed (% 81.15) for tool wear was calculated.


2021 ◽  
Author(s):  
Raqibah Najwa Mudzaffar ◽  
Mohamad Faiz Izzat Bahauddin ◽  
Hanisah Manshor ◽  
Ahmad Zahirani Ahmad Azhar ◽  
Nik Akmar Rejab ◽  
...  

Abstract The zirconia toughened alumina enhanced with titania and chromia (ZTA-TiO2-Cr2O3) ceramic cutting tool is a new cutting tool that possesses good hardness and fracture toughness. However, the performance of the ZTA-TiO2-Cr2O3 cutting tool continues to remain unknown and therefore requires further study. In this research, the wearing of the ZTA-TiO2-Cr2O3 cutting tool and the surface roughness of the machined surface of stainless steel 316L was investigated. The experiments were conducted where the cutting speeds range between 314 to 455 m/min, a feed rate from 0.1 to 0.15 mm/rev, and a depth of cut of 0.2 mm. A CNC lathe machine was utilised to conduct the turning operation for the experiment. Additionally, analysis of the flank wear and crater wear was undertaken using an optical microscope, while the chipping area was observed via scanning electron microscopy (SEM). The surface roughness of the machined surface was measured via portable surface roughness. The lowest value of flank wear, crater wear and surface roughness obtained are 0.044 mm, 0.45 mm2, and 0.50 µm, respectively at the highest cutting speed of 455 m/min and the highest feed rate of 0.15 mm/rev. The chipping area became smaller with the increase of feed rate from 0.10 to 0.15 mm/rev and larger when the feed rate decrease. This was due to the reduced vibrations at the higher spindle speed resulting in a more stable cutting operation, thereby reducing the value of tool wear, surface roughness, and the chipping area.


Sign in / Sign up

Export Citation Format

Share Document