Solid desiccant dehumidification-based air-conditioning system for agricultural storage application: Theory and experiments

Author(s):  
Muhammad H Mahmood ◽  
Muhammad Sultan ◽  
Takahiko Miyazaki

This study experimentally investigates desiccant dehumidification and indirect evaporative cooling for agricultural products' storage. Thermodynamic advantages of the proposed system are highlighted and compared to vapor compression systems. Significance of proposed system is discussed in relation to agricultural storage application. Factors affecting the postharvest quality of products are discussed, and consequently, the psychrometric zones are established for optimum storage. Hydrophilic polymeric sorbent-based desiccant units are used for the experimental investigation. An open-cycle experimental apparatus is setup by which desiccant dehumidification and regeneration processes are analyzed at various conditions. Thereby, a novel correlation is developed by which desiccant dehumidification process can be simulated precisely. The correlation is successfully validated against the experimental data of various conditions. Desiccant air-conditioning cycle is analyzed for two cases (i.e. case-A: dry-bulb temperature = 31 ℃, humidity-ratio = 6 g/kg-DA; and case-B: dry-bulb temperature = 13 ℃, humidity-ratio = 6 g/kg-DA) to investigate the proposed system's applicability for agricultural storage. The results show that the thermal coefficient of performance is highly influenced by ambient air conditions and decreases with the increase in regeneration temperature. The thermal coefficient of performance for case-A is higher as compared to case-B, and for both cases, it increases with the increase in wet-bulb effectiveness of the evaporative cooling unit.

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5530
Author(s):  
Muhammad Aleem ◽  
Ghulam Hussain ◽  
Muhammad Sultan ◽  
Takahiko Miyazaki ◽  
Muhammad H. Mahmood ◽  
...  

In this study, experimental apparatus of desiccant dehumidification was developed at lab-scale, using silica gel as a desiccant material. Experimental data were obtained at various ambient air conditions, while focusing the climatic conditions of Multan (Pakistan). A steady-state analysis approach for the desiccant dehumidification process was used, and thereby the slope of desiccant dehumidification line on psychrometric chart (ϕ*) was determined. It has been found that ϕ* = 0.22 in case of silica gel which is lower than the hydrophilic polymeric sorbent, i.e., ϕ* = 0.31. The study proposed two kinds of systems, i.e., (i) standalone desiccant air-conditioning (DAC) and (ii) Maisotsenko-cycle-assisted desiccant air-conditioning (M-DAC) systems. In addition, two kinds of desiccant material (i.e., silica gel and hydrophilic polymeric sorbent) were investigated from the thermodynamic point of view for both system types, using the experimental data and associated results. The study aimed to determine the optimum air-conditioning (AC) system type, as well as adsorbent material for building AC application. In this regard, perspectives of dehumidification capacity, cooling capacity, and thermal coefficient of performance (COP) are taken into consideration. According to the results, hydrophilic polymeric sorbent gave a higher performance, as compared to silica gel. In case of both systems, the performance was improved with the addition of Maisotsenko cycle evaporative cooling unit. The maximum thermal COP was achieved by using a polymer-based M-DAC system, i.e., 0.47 at 70 °C regeneration temperature.


2012 ◽  
Vol 516-517 ◽  
pp. 1121-1127
Author(s):  
Qing Zhang ◽  
Jian Hua Liu ◽  
Wen Zhong Gao ◽  
Liang Zhang

A novel experimental apparatus of a liquid desiccant air-conditioning system was introduced. The system differed from similar researches in that it could handle the total load of the conditioned space without any refrigeration equipment and it worked in ventilation mode, which could greatly improve the indoor air quality. The schematic diagram of the system was presented and circulating processes of air, water and lithium chloride solution in the system were introduced. The definition of thermal coefficient of performance (TCOP) for the system was introduced and main operating parameters that could affect TCOP were analyzed. The tested TCOP of the system was 0.72~0.98 in summer and 0.30~0.51 in autumn, which showed that liquid discussant air conditioning system was especially suitable for hot and humid conditions.


2017 ◽  
Vol 2 (1) ◽  
pp. 76 ◽  
Author(s):  
Muhammad Kashif ◽  
Muhammad Sultan ◽  
Zahid Mahmood Khan

This study assesses the potential selection of efficient air-conditioning (AC) and cooling systems in order to avoid excess power consumption, mitigation of harmful refrigerants generated by the existing AC systems. Several varieties of active and passive air-conditioning systems i.e. heating ventilating air-conditioning (HVAC), vapor compression air-conditioning (VCAC) conventional direct evaporative cooling (DEC) and indirect evaporative cooling (IEC)  and desiccant air-conditioning (DAC) systems are under practice for the cooling and dehumidification. The storage of agricultural products mainly based on product individual characteristics i.e. respiration rate, transpiration rate and moisture content of that product. Variant ambient air conditions and the type of application are the main parameters for the choice of air-conditioning system to get optimum performance. The DAC system subsidize the coefficient of performance (COP) in humid regions, coastal ranges of developing countries e.g. Karachi and Gawadar (Pakistan) with hot humid climatic conditions. In similar way, hottest regions of the country such as Sibbi, Jacobabad and Multan perform better results when incorporates with M-cycle evaporative cooling system. Variation in ambient air conditions directly affect the cooling load and the choice of sustainable air-conditioning system


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2675 ◽  
Author(s):  
Muhammad Kashif ◽  
Hassan Niaz ◽  
Muhammad Sultan ◽  
Takahiko Miyazaki ◽  
Yongqiang Feng ◽  
...  

The present study considers evaporative cooling and desiccant unit-based air-conditioning (AC) options for livestock AC application. In this regard, proposed systems are investigated by means of experiments and thermodynamic investigations. Air-conditioning requirements for animals are theoretically investigated and temperature-humidity index (THI) is estimated. A lab-scale heat mass exchanger based on the Maisotsenko-cycle evaporative cooling conception (MEC) is set up and its performance is evaluated at different ambient air conditions. In addition, a desiccant-based air-conditioning (DAC) unit is thermodynamically evaluated using a steady-state model available in the literature. The study focuses on the ambient conditions of Multan which is the 5th largest city of Pakistan and is assumed to be a typical hot city of southern Punjab. The study proposed three kinds of AC combination i.e., (i) stand-alone MEC, (ii) stand-alone desiccant AC, and (iii) M-cycle based desiccant AC systems. Wet bulb effectiveness of the stand-alone MEC unit resulted in being from 64% to 78% whereas the coefficient of performance for stand-alone desiccant AC and M-cycle based desiccant AC system was found to be 0.51 and 0.62, respectively. Results showed that the stand-alone MEC and M-cycle based desiccant AC systems can achieve the animals’ thermal comfort for the months of March to June and March to September, respectively, whereas, stand-alone desiccant AC is not found to be feasible in any month. In addition, the ambient situations of winter months (October to February) are already within the range of animal thermal comfort.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Ahmed H. Abdel-Salam ◽  
Chris McNevin ◽  
Lisa Crofoot ◽  
Stephen J. Harrison ◽  
Carey J. Simonson

The field performance of a low-flow internally cooled/heated liquid desiccant air conditioning (LDAC) system is investigated in this paper. The quasi-steady performance (sensible and latent heat transfer rates, coefficient of performance (COP), and uncertainties) of the LDAC system is quantified under different ambient air conditions. A major contribution of this work is a direct comparison of the transient and quasi-steady performance of the LDAC system. This paper is the first to quantify the importance of transients and shows that, for the environmental and operating conditions in this paper, transients can be neglected when estimating the energy consumption of the LDAC system. Another major contribution of this work is the development and verification of a new method that quantifies (with acceptable uncertainties) the quasi-steady performance of a LDAC system from transient field data using average data.


1991 ◽  
Vol 113 (2) ◽  
pp. 80-88 ◽  
Author(s):  
S. Farooq ◽  
D. M. Ruthven

The cyclic operation of a desiccant bed used for solar air conditioning applications has been simulated numerically. The results suggest that the optimal choice of desiccant is not seriously limited by the shape of the isotherm since the effect of isotherm shape on the moisture removal rate can be adequately compensated by appropriate adjustment of the cycle time. The conditions required to maximize the moisture removal rate for any given degree of nonlinearity also satisfy the requirements for maximizing the thermal coefficient of performance.


KnE Energy ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 22
Author(s):  
Andang Widiharto ◽  
Didit Setyo Pamuji ◽  
Atik Nurul Laila ◽  
Fiki Rahmatika Salis ◽  
Luthfi Zharif ◽  
...  

<p>Air conditioning (AC) is one of the most building’s energy consumer, included in building of Engineering Physisc’s Departement, Universitas Gadjah Mada (UGM). The declining of fossil fuel reserves and the increasing effects of global warming, forcing the world to switch to renewable energy sources. This paper discusses the design of solar absorption cooling system to replace conventional AC in seven lecture halls of Engineering Physic’s Departement, UGM. There are some steps that have been done to design the solar absorption cooling, i.e. do a study of the potential availability of solar energy, calculate the cooling loads, analyze the thermodynamic process of the system, determine the type of collector to be used and calculate area of solar collector needed. The thermal coefficient of performance (COP) of the system designed was about 0.84 which could use some types of flat plate solar collector with each area corresponding to each efficiency values. </p><p><strong>Keyword</strong> : Air conditioning; global warming; solar absorption cooling; solar collector</p>


Author(s):  
Rahmat Iman Mainil ◽  
Ahmad Wisnu Sulaiman ◽  
Afdhal Kurniawan Mainil ◽  
Azridjal Aziz

The increase of condenser temperature and pressure in air-conditioning leads to decreased cooling capacity and the increase of power consumption. Evaporative cooling could improve the thermal performance of the system. In this study, the evaporative cooling module was installed before the condenser to reduce the inlet air temperature to the condenser unit. The impact of condenser air temperature on the air conditioning system's overall performance was determined by varying the cooling pad discharge water flowrate of 880, 1040, and 1200 mL/min. The cooling load of 2000 W was employed in this experiment. The obtained results were compared with the air conditioning without an evaporative cooling module. It shows that the coefficient of performance (COP) increases with the increase of discharge water flow rate. The highest COP obtained is 7.09 at the flow rate of 1200 mL/min. The compressor work reduces about 6.57 % as compared with the air conditioner without evaporative cooling application. Besides, the COP increases by 12. 95 % at the highest flow rate.


2016 ◽  
Vol 38 (1) ◽  
pp. 89-103 ◽  
Author(s):  
Xiaofeng Niu ◽  
Yue Zhang ◽  
Xing Li ◽  
Yan Tong ◽  
Guangli Zhang

In the liquid desiccant system, the amount of the diluted solution sent to the regenerator has a great influence on the system performance. The liquid desiccant system with an adjustable reflux ratio of regeneration solution was proposed in the paper, and the effect of the solution regeneration reflux ratio on the system performance was analysed by simulation. The energy consumption, the electric coefficient of performance and the thermal coefficient of performance under different water condensation rates and varied solution regeneration reflux ratio were obtained. The results show that, the overall performance of the liquid desiccant system can be improved by reducing the solution regeneration reflux ratio; a 1% decrease in the reflux ratio leads to a 0.56–1.02% average growth rate of electric coefficient of performance and a 0.51–0.95% average growth rate of thermal coefficient of performance. Moreover, when the regeneration temperature is high and the water condensation rate of the process air is low, the improvement from decreasing the solution regeneration reflux ratio is more significant. However, the reflux ratio cannot be reduced to an unlimited extent. There is a rational optimum range of the reflux ratio to achieve high thermal coefficient of performance, the optimum range under low dehumidifying load is different from that under high load. Practical application: The performance of a liquid desiccant system can be improved by the proposed system configuration with an adjustable reflux ratio of regeneration solution, such novel system configuration could be applied for the design of air conditioning system, which is beneficial for the energy saving in building. Moreover, the rational optimum ranges of the reflux ratio to achieve high coefficient of performance under different dehumidifying loads are obtained, which could provide guidelines for the design and operation management of the liquid desiccant based building air conditioning system.


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402093499
Author(s):  
Shafqat Hussain ◽  
Abdulrahim Kalendar ◽  
Muhammad Zeeshan Rafique ◽  
Patrick Oosthuizen

This article presents numerical investigations of the solar-assisted hybrid desiccant evaporative cooling system integrated with standard air collectors for applications under the hot and humid climatic conditions of Kuwait city. The objective is to introduce the energy-efficient and carbon-free solar-assisted hybrid desiccant evaporative cooling system to alleviate the principal problems of electricity consumption and carbon emissions resulting from the use of the conventional vapor-compression cooling systems. In the normal building, during cooling load operation, the solar-assisted hybrid desiccant evaporative cooling system can cope with the cooling load particularly sensible by evaporative cooling and latent through desiccant dehumidification. The outcomes of this work indicate that solar-assisted hybrid desiccant evaporative cooling device integrated with air collectors is capable of providing average coefficient of performance of 0.85 and has the potential to provide cooling with energy saving when compared with conventional vapor-compression refrigeration systems. It was concluded that under the intense outdoor environmental conditions (ambient air at greater than 45°C and 60% relative humidity), the delivered supply air from the evaporative cooling was nearly at 27°C and 65% relative humidity. To solve this problem, the system was assisted with conventional cooling coil (evaporator of heat pump) to supply air at comfortable conditions in the conditioned space.


Sign in / Sign up

Export Citation Format

Share Document