Rosmarinic acid attenuates chromium‐induced hepatic and renal oxidative damage and DNA damage in rats

2020 ◽  
Vol 34 (11) ◽  
Author(s):  
Azem A. Khalaf ◽  
Eman I. Hassanen ◽  
Marwa A. Ibrahim ◽  
Adel F. Tohamy ◽  
Mahmoud A. Aboseada ◽  
...  
2016 ◽  
Vol 35 (8) ◽  
pp. 877-886 ◽  
Author(s):  
M Bacanlı ◽  
S Aydın ◽  
G Taner ◽  
HG Göktaş ◽  
T Şahin ◽  
...  

Reactive oxygen species are believed to be involved in the development of sepsis. Plant-derived phenolic compounds are thought to be possible therapeutic agents against sepsis because of their antioxidant properties. Rosmarinic acid (RA) is a phenolic compound commonly found in various plants, which has many biological activities including antioxidant activity. The aim of this study was to investigate the effects of RA on sepsis-induced DNA damage in the lymphocytes and liver and kidney cells of Wistar albino rats by alkaline comet assay with and without formamidopyrimidine DNA glycosylase protein. The oxidative stress parameters such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and total glutathione (GSH) and malondialdehyde (MDA) levels in the liver and kidney tissues and an inflammatory cytokine, tumor necrosis factor α (TNF-α) level in plasma were also evaluated. It is found that DNA damage in the lymphocytes, livers, and kidneys of the RA-treated rats was significantly lower than that in the sepsis-induced rats. RA treatment also decreased the MDA levels and increased the GSH levels and SOD and GSH-Px activities in the livers and kidneys of the sepsis-induced rats. Plasma TNF-α level was found to be decreased in the RA-treated rats. It seems that RA might have a role in the attenuation of sepsis-induced oxidative damage not only by decreasing the DNA damage but also by increasing the antioxidant status and DNA repair capacity of the animals.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Jelena Petrović ◽  
Dušanka Stanić ◽  
Gordana Dmitrašinović ◽  
Bosiljka Plećaš-Solarović ◽  
Svetlana Ignjatović ◽  
...  

Sedentary lifestyle is highly associated with increased risk of cardiovascular disease, obesity, and type 2 diabetes. It is known that regular physical activity has positive effects on health; however several studies have shown that acute and strenuous exercise can induce oxidative stress and lead to DNA damage. As magnesium is essential in maintaining DNA integrity, the aim of this study was to determine whether four-week-long magnesium supplementation in students with sedentary lifestyle and rugby players could prevent or diminish impairment of DNA. By using the comet assay, our study demonstrated that the number of peripheral blood lymphocytes (PBL) with basal endogenous DNA damage is significantly higher in rugby players compared to students with sedentary lifestyle. On the other hand, magnesium supplementation significantly decreased the number of cells with high DNA damage, in the presence of exogenous H2O2, in PBL from both students and rugby players, and markedly reduced the number of cells with medium DNA damage in rugby players compared to corresponding control nonsupplemented group. Accordingly, the results of our study suggest that four-week-long magnesium supplementation has marked effects in protecting the DNA from oxidative damage in both rugby players and in young men with sedentary lifestyle. Clinical trial is registered at ANZCTR Trial Id:ACTRN12615001237572.


The Analyst ◽  
2021 ◽  
Author(s):  
Jing Zhou ◽  
Dan Yang ◽  
Guohui Liu ◽  
Siying Li ◽  
Wennan Feng ◽  
...  

Guanine (G) oxidation products, such as 8-hydroxy-2′-deoxyguanosine (8-OHdG) and 8-oxo-guanine (8-OXOG), have been widely studied as promising biomarkers for DNA oxidative damage.


Science ◽  
2018 ◽  
Vol 361 (6409) ◽  
pp. eaat0958 ◽  
Author(s):  
Lixin Chen ◽  
Pingfang Liu ◽  
Thomas C. Evans ◽  
Laurence M. Ettwiller

Following the Comment of Stewart et al., we repeated our analysis on sequencing runs from The Cancer Genome Atlas (TCGA) using their suggested parameters. We found signs of oxidative damage in all sequence contexts and irrespective of the sequencing date, reaffirming that DNA damage affects mutation-calling pipelines in their ability to accurately identify somatic variations.


2015 ◽  
Vol 6 ◽  
Author(s):  
Goktas Hatice ◽  
Bacanli Merve ◽  
Aydin Sevtap ◽  
Taner Gokce ◽  
Sahin Tolga ◽  
...  

1998 ◽  
Vol 45 (1) ◽  
pp. 183-190 ◽  
Author(s):  
L Fillion ◽  
A Collins ◽  
S Southon

Epidemiological studies have revealed a strong correlation between high intake of fruit and vegetables and low incidence of certain cancers. Micronutrients present in these foods are thought to decrease free radical attack on DNA and hence protect against mutations that cause cancer, but the fine details of the causal mechanism have still to be elucidated. Whether dietary factors can modulate DNA repair--a crucial element in the avoidance of carcinogenesis--is an intriguing question that has not yet been satisfactorily answered. In order to investigate the effects of beta-carotene on oxidative damage and its repair, volunteers were given a single 45 mg dose and lymphocytes taken before and after the supplement were treated in vitro with H2O2. DNA strand breaks and oxidised pyrimidines were measured at intervals, to monitor the removal of oxidative DNA damage. We found inter-individual variations in response. In cases where the baseline plasma beta-carotene concentration was high, or where supplementation increased the plasma concentration, recovery from oxidative damage (i.e. removal of both oxidised pyrimidines and strand breaks) was relatively rapid. However, what seems to be an enhancement of repair might in fact represent an amelioration of the continuing oxidative stress encountered by the lymphocytes under in vitro culture conditions. We found that culture in a 5% oxygen atmosphere enhanced recovery of lymphocytes from H2O2 damage.


2019 ◽  
Vol 34 (10) ◽  
pp. 1876-1890 ◽  
Author(s):  
M J Xavier ◽  
B Nixon ◽  
S D Roman ◽  
R J Scott ◽  
J R Drevet ◽  
...  

Abstract STUDY QUESTION Do all regions of the paternal genome within the gamete display equivalent vulnerability to oxidative DNA damage? SUMMARY ANSWER Oxidative DNA damage is not randomly distributed in mature human spermatozoa but is instead targeted, with particular chromosomes being especially vulnerable to oxidative stress. WHAT IS KNOWN ALREADY Oxidative DNA damage is frequently encountered in the spermatozoa of male infertility patients. Such lesions can influence the incidence of de novo mutations in children, yet it remains to be established whether all regions of the sperm genome display equivalent susceptibility to attack by reactive oxygen species. STUDY DESIGN, SIZE, DURATION Human spermatozoa obtained from normozoospermic males (n = 8) were split into equivalent samples and subjected to either hydrogen peroxide (H2O2) treatment or vehicle controls before extraction of oxidized DNA using a modified DNA immunoprecipitation (MoDIP) protocol. Specific regions of the genome susceptible to oxidative damage were identified by next-generation sequencing and validated in the spermatozoa of normozoospermic males (n = 18) and in patients undergoing infertility evaluation (n = 14). PARTICIPANTS/MATERIALS, SETTING, METHODS Human spermatozoa were obtained from normozoospermic males and divided into two identical samples prior to being incubated with either H2O2 (5 mm, 1 h) to elicit oxidative stress or an equal volume of vehicle (untreated controls). Alternatively, spermatozoa were obtained from fertility patients assessed as having high basal levels of oxidative stress within their spermatozoa. All semen samples were subjected to MoDIP to selectively isolate oxidized DNA, prior to sequencing of the resultant DNA fragments using a next-generation whole-genomic sequencing platform. Bioinformatic analysis was then employed to identify genomic regions vulnerable to oxidative damage, several of which were selected for real-time quantitative PCR (qPCR) validation. MAIN RESULTS AND THE ROLE OF CHANCE Approximately 9000 genomic regions, 150–1000 bp in size, were identified as highly vulnerable to oxidative damage in human spermatozoa. Specific chromosomes showed differential susceptibility to damage, with chromosome 15 being particularly sensitive to oxidative attack while the sex chromosomes were protected. Susceptible regions generally lay outside protamine- and histone-packaged domains. Furthermore, we confirmed that these susceptible genomic sites experienced a dramatic (2–15-fold) increase in their burden of oxidative DNA damage in patients undergoing infertility evaluation compared to normal healthy donors. LIMITATIONS, REASONS FOR CAUTION The limited number of samples analysed in this study warrants external validation, as do the implications of our findings. Selection of male fertility patients was based on high basal levels of oxidative stress within their spermatozoa as opposed to specific sub-classes of male factor infertility. WIDER IMPLICATIONS OF THE FINDINGS The identification of genomic regions susceptible to oxidation in the male germ line will be of value in focusing future analyses into the mutational load carried by children in response to paternal factors such as age, the treatment of male infertility using ART and paternal exposure to environmental toxicants. STUDY FUNDING/COMPETING INTEREST(S) Project support was provided by the University of Newcastle’s (UoN) Priority Research Centre for Reproductive Science. M.J.X. was a recipient of a UoN International Postgraduate Research Scholarship. B.N. is the recipient of a National Health and Medical Research Council of Australia Senior Research Fellowship. Authors declare no conflict of interest.


2019 ◽  
Vol 8 (5) ◽  
pp. 729 ◽  
Author(s):  
Matteo Bordoni ◽  
Orietta Pansarasa ◽  
Michela Dell’Orco ◽  
Valeria Crippa ◽  
Stella Gagliardi ◽  
...  

We already demonstrated that in peripheral blood mononuclear cells (PBMCs) of sporadic amyotrophic lateral sclerosis (sALS) patients, superoxide dismutase 1 (SOD1) was present in an aggregated form in the cytoplasmic compartment. Here, we investigated the possible effect of soluble SOD1 decrease and its consequent aggregation. We found an increase in DNA damage in patients PBMCs characterized by a high level of aggregated SOD1, while we found no DNA damage in PBMCs with normal soluble SOD1. We found an activation of ataxia-telangiectasia-mutated (ATM)/Chk2 and ATM and Rad3-related (ATR)/Chk1 DNA damage response pathways, which lead to phosphorylation of SOD1. Moreover, data showed that phosphorylation allows SOD1 to shift from the cytoplasm to the nucleus, protecting DNA from oxidative damage. Such pathway was finally confirmed in our cellular model. Our data lead us to suppose that in a sub-group of patients this physiologic pathway is non-functional, leading to an accumulation of DNA damage that causes the death of particularly susceptible cells, like motor neurons. In conclusion, during oxidative stress SOD1 is phosphorylated by Chk2 leading to its translocation in the nuclear compartment, in which SOD1 protects DNA from oxidative damage. This pathway, inefficient in sALS patients, could represent an innovative therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document