Copper doping enhanced the oxidative stress–mediated cytotoxicity of TiO2 nanoparticles in A549 cells

2017 ◽  
Vol 37 (5) ◽  
pp. 496-507 ◽  
Author(s):  
J Ahmad ◽  
MA Siddiqui ◽  
MJ Akhtar ◽  
HA Alhadlaq ◽  
A Alshamsan ◽  
...  

Physicochemical properties of titanium dioxide nanoparticles (TiO2 NPs) can be tuned by doping with metals or nonmetals. Copper (Cu) doping improved the photocatalytic behavior of TiO2 NPs that can be applied in various fields such as environmental remediation and nanomedicine. However, interaction of Cu-doped TiO2 NPs with human cells is scarce. This study was designed to explore the role of Cu doping in cytotoxic response of TiO2 NPs in human lung epithelial (A549) cells. Characterization data demonstrated the presence of both TiO2 and Cu in Cu-doped TiO2 NPs with high-quality lattice fringes without any distortion. The size of Cu-doped TiO2 NPs (24 nm) was lower than pure TiO2 NPs (30 nm). Biological results showed that both pure and Cu-doped TiO2 NPs induced cytotoxicity and oxidative stress in a dose-dependent manner. Low mitochondrial membrane potential and higher caspase-3 enzyme (apoptotic markers) activity were also observed in A549 cells exposed to pure and Cu-doped TiO2 NPs. We further observed that cytotoxicity caused by Cu-doped TiO2 NPs was higher than pure TiO2 NPs. Moreover, antioxidant N-acetyl cysteine effectively prevented the reactive oxygen species generation, glutathione depletion, and cell viability reduction caused by Cu-doped TiO2 NPs. This is the first report showing that Cu-doped TiO2 NPs induced cytotoxicity and oxidative stress in A549 cells. This study warranted further research to explore the role of Cu doping in toxicity mechanisms of TiO2 NPs.

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yuan Zhou ◽  
Shanshan Zhang ◽  
Xiang Fan

Stroke is the second most common cause of death globally and the leading cause of death in China. The pathogenesis of cerebral ischemia injury is complex, and oxidative stress plays an important role in the fundamental pathologic progression of cerebral damage in ischemic stroke. Previous studies have preliminarily confirmed that oxidative stress should be a potential therapeutic target and antioxidant as a treatment strategy for ischemic stroke. Emerging experimental studies have demonstrated that polyphenols exert the antioxidant potential to play the neuroprotection role after ischemic stroke. This comprehensive review summarizes antioxidant effects of some polyphenols, which have the most inhibition effects on reactive oxygen species generation and oxidative stress after ischemic stroke.


2017 ◽  
Vol 1 (1) ◽  
pp. 57-64 ◽  
Author(s):  
Cecilia Virginia Gheran ◽  
Sorina Nicoleta Voicu ◽  
Guillaume Rigaux ◽  
Maite Callewaert ◽  
Francoise Chuburu ◽  
...  

Abstract Gadolinium nanoparticles (GdNPs) are potential agents for MRI of lymph nodes. The aim of this study was to evaluate the in vitro effects of 1 μM, 2.5 μM and 5 μM of GdDOTA⊂CS-TPP/HA and GdDOTP⊂CS-TPP/HA NPs on A20 lymphocyte cells exposed for 6 and 24 hours. The total cellular biomass (SRB), lactate dehydrogenase activity (LDH) and oxidative stress parameters, such as reactive oxygen species generation (ROS), reduced glutathione (GSH), malondialdehyde (MDA) and advanced oxidation protein products (AOPP) were analyzed by spectrophotometric and fluorimetric methods. After cells exposure to 1 μM, 2.5 μM and 5 μM of GdDOTP⊂CS-TPP/HA NPs their viability decreased in a time- and dose-dependent manner, whereas for GdDOTA⊂CS-TPP/HA no significant changes were noticed. Both NPs formulations in doses of 1 μM, 2.5 μM, 5 μM did not affect the plasma membrane at each time point tested. The levels of ROS, MDA and AOPP increased proportionally with the concentration and exposure time. GSH concentration decreased significantly for all doses of both NPs tested. Taken together our data suggest that, GdDOTP⊂CS-TPP/HA and GdDOTA⊂CS-TPP/HA NPs induced oxidative stress in A20 lymphocyte cells which was counteracted by the cells antioxidant defense system to a certain extend.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1709 ◽  
Author(s):  
Maqusood Ahamed ◽  
Mohd Javed Akhtar ◽  
M. A. Majeed Khan ◽  
ZabnAllah M. Alaizeri ◽  
Hisham A. Alhadlaq

Graphene-based nanocomposites have attracted enormous interest in nanomedicine and environmental remediation, owing to their unique characteristics. The increased production and widespread application of these nanocomposites might raise concern about their adverse health effects. In this study, for the first time, we examine the cytotoxicity and oxidative stress response of a relatively new nanocomposite of cerium oxide-reduced graphene oxide (CeO2-RGO) in human lung epithelial (A549) cells. CeO2-RGO nanocomposites and RGO were prepared by a simple hydrothermal method and characterized by relevant analytical techniques. Cytotoxicity data have shown that RGO significantly induces toxicity in A549 cells, evident by cell viability reduction, membrane damage, cell cycle arrest, and mitochondrial membrane potential loss. However, CeO2-RGO nanocomposites did not cause statistically significant toxicity as compared to a control. We further observed that RGO significantly induces reactive oxygen species generation and reduces glutathione levels. However, CeO2-RGO nanocomposites did not induce oxidative stress in A549 cells. Interestingly, we observed that CeO2 nanoparticles (NPs) alone significantly increase glutathione (GSH) levels in A549 cells as compared to a control. The GSH replenishing potential of CeO2 nanoparticles could be one of the possible reasons for the biocompatible nature of CeO2-RGO nanocomposites. Our data warrant further and more advanced research to explore the biocompatibility/safety mechanisms of CeO2-RGO nanocomposites in different cell lines and animal models.


2019 ◽  
Vol 17 (4) ◽  
pp. 426-431
Author(s):  
Jin Xuezhu ◽  
Li Jitong ◽  
Nie Leigang ◽  
Xue Junlai

The main purpose of this study is to investigate the role of citrus leaf extract in carbon tetrachloride-induced hepatic injury and its potential molecular mechanism. Carbon tetrachloride was used to construct hepatic injury animal model. To this end, rats were randomly divided into 4 groups: control, carbon tetrachloride-treated, and two carbon tetrachloride + citrus leaf extract-treated groups. The results show that citrus leaf extract treatment significantly reversed the effects of carbon tetrachloride on the body weight changes and liver index. Besides, treatment with citrus leaf extract also reduced the levels of serum liver enzymes and oxidative stress in a dose-dependent manner. H&E staining and western blotting suggested that citrus leaf extract could repair liver histological damage by regulating AMPK and Nrf-2.


2020 ◽  
Vol 25 (40) ◽  
pp. 4310-4317 ◽  
Author(s):  
Lichao Sun ◽  
Shouqin Ji ◽  
Jihong Xing

Background/Aims: Central pro-inflammatory cytokine (PIC) signal is involved in neurological deficits after transient global ischemia induced by cardiac arrest (CA). The present study was to examine the role of microRNA- 155 (miR-155) in regulating IL-1β, IL-6 and TNF-α in the hippocampus of rats with induction of CA. We further examined the levels of products of oxidative stress 8-isoprostaglandin F2α (8-iso PGF2α, indication of oxidative stress); and 8-hydroxy-2’-deoxyguanosine (8-OHdG, indication of protein oxidation) after cerebral inhibition of miR-155. Methods: CA was induced by asphyxia and followed by cardiopulmonary resuscitation in rats. ELISA and western blot analysis were used to determine the levels of PICs and products of oxidative stress; and the protein expression of NADPH oxidase (NOXs) in the hippocampus. In addition, neurological severity score and brain edema were examined to assess neurological functions. Results: We observed amplification of IL-1β, IL-6 and TNF-α along with 8-iso PGF2α and 8-OHdG in the hippocampus of CA rats. Cerebral administration of miR-155 inhibitor diminished upregulation of PICs in the hippocampus. This also attenuated products of oxidative stress and upregulation of NOX4. Notably, inhibition of miR-155 improved neurological severity score and brain edema and this was linked to signal pathways of PIC and oxidative stress. Conclusion: We showed the significant role of blocking miR-155 signal in improving the neurological function in CA rats likely via inhibition of signal pathways of neuroinflammation and oxidative stress, suggesting that miR-155 may be a target in preventing and/or alleviating development of the impaired neurological functions during CA-evoked global cerebral ischemia.


2020 ◽  
Vol 17 (4) ◽  
pp. 394-401
Author(s):  
Yuanhua Wu ◽  
Yuan Huang ◽  
Jing Cai ◽  
Donglan Zhang ◽  
Shixi Liu ◽  
...  

Background: Ischemia/reperfusion (I/R) injury involves complex biological processes and molecular mechanisms such as autophagy. Oxidative stress plays a critical role in the pathogenesis of I/R injury. LncRNAs are the regulatory factor of cerebral I/R injury. Methods: This study constructs cerebral I/R model to investigate role of autophagy and oxidative stress in cerebral I/R injury and the underline regulatory mechanism of SIRT1/ FOXO3a pathway. In this study, lncRNA SNHG12 and FOXO3a expression was up-regulated and SIRT1 expression was down-regulated in HT22 cells of I/R model. Results: Overexpression of lncRNA SNHG12 significantly increased the cell viability and inhibited cerebral ischemicreperfusion injury induced by I/Rthrough inhibition of autophagy. In addition, the transfected p-SIRT1 significantly suppressed the release of LDH and SOD compared with cells co-transfected with SIRT1 and FOXO3a group and cells induced by I/R and transfected with p-SNHG12 group and overexpression of cells co-transfected with SIRT1 and FOXO3 further decreased the I/R induced release of ROS and MDA. Conclusion: In conclusion, lncRNA SNHG12 increased cell activity and inhibited oxidative stress through inhibition of SIRT1/FOXO3a signaling-mediated autophagy in HT22 cells of I/R model. This study might provide new potential therapeutic targets for further investigating the mechanisms in cerebral I/R injury and provide.


2013 ◽  
Vol 8 (4) ◽  
pp. 266-277 ◽  
Author(s):  
Diego Duarte ◽  
Kamila Silva ◽  
Mariana Rosales ◽  
José Lopes de Faria ◽  
Jacqueline Lopes de Faria

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 629
Author(s):  
Jorge Gutiérrez-Cuevas ◽  
Ana Sandoval-Rodriguez ◽  
Alejandra Meza-Rios ◽  
Hugo Christian Monroy-Ramírez ◽  
Marina Galicia-Moreno ◽  
...  

Obesity is defined as excessive body fat accumulation, and worldwide obesity has nearly tripled since 1975. Excess of free fatty acids (FFAs) and triglycerides in obese individuals promote ectopic lipid accumulation in the liver, skeletal muscle tissue, and heart, among others, inducing insulin resistance, hypertension, metabolic syndrome, type 2 diabetes (T2D), atherosclerosis, and cardiovascular disease (CVD). These diseases are promoted by visceral white adipocyte tissue (WAT) dysfunction through an increase in pro-inflammatory adipokines, oxidative stress, activation of the renin-angiotensin-aldosterone system (RAAS), and adverse changes in the gut microbiome. In the heart, obesity and T2D induce changes in substrate utilization, tissue metabolism, oxidative stress, and inflammation, leading to myocardial fibrosis and ultimately cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of carbohydrate and lipid metabolism, also improve insulin sensitivity, triglyceride levels, inflammation, and oxidative stress. The purpose of this review is to provide an update on the molecular mechanisms involved in obesity-linked CVD pathophysiology, considering pro-inflammatory cytokines, adipokines, and hormones, as well as the role of oxidative stress, inflammation, and PPARs. In addition, cell lines and animal models, biomarkers, gut microbiota dysbiosis, epigenetic modifications, and current therapeutic treatments in CVD associated with obesity are outlined in this paper.


2021 ◽  
Vol 22 (12) ◽  
pp. 6379
Author(s):  
Elisa Roda ◽  
Erica Cecilia Priori ◽  
Daniela Ratto ◽  
Fabrizio De Luca ◽  
Carmine Di Iorio ◽  
...  

Frailty is a geriatric syndrome associated with both locomotor and cognitive decline, typically linked to chronic systemic inflammation, i.e., inflammaging. In the current study, we investigated the effect of a two-month oral supplementation with standardized extracts of H. erinaceus, containing a known amount of Erinacine A, Hericenone C, Hericenone D, and L-ergothioneine, on locomotor frailty and cerebellum of aged mice. Locomotor performances were monitored comparing healthy aging and frail mice. Cerebellar volume and cytoarchitecture, together with inflammatory and oxidative stress pathways, were assessed focusing on senescent frail animals. H. erinaceus partially recovered the aged-related decline of locomotor performances. Histopathological analyses paralleled by immunocytochemical evaluation of specific molecules strengthened the neuroprotective role of H. erinaceus able to ameliorate cerebellar alterations, i.e., milder volume reduction, slighter molecular layer thickness decrease and minor percentage of shrunken Purkinje neurons, also diminishing inflammation and oxidative stress in frail mice while increasing a key longevity regulator and a neuroprotective molecule. Thus, our present findings demonstrated the efficacy of a non-pharmacological approach, based on the dietary supplementation using H. erinaceus extract, which represent a promising adjuvant therapy to be associated with conventional geriatric treatments.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shenhai Gong ◽  
Yinglin Feng ◽  
Yunong Zeng ◽  
Huanrui Zhang ◽  
Meiping Pan ◽  
...  

Abstract Background Gut microbiota has been reported to be disrupted by cisplatin, as well as to modulate chemotherapy toxicity. However, the precise role of intestinal microbiota in the pathogenesis of cisplatin hepatotoxicity remains unknown. Methods We compared the composition and function of gut microbiota between mice treated with and without cisplatin using 16S rRNA gene sequencing and via metabolomic analysis. For understanding the causative relationship between gut dysbiosis and cisplatin hepatotoxicity, antibiotics were administered to deplete gut microbiota and faecal microbiota transplantation (FMT) was performed before cisplatin treatment. Results 16S rRNA gene sequencing and metabolomic analysis showed that cisplatin administration caused gut microbiota dysbiosis in mice. Gut microbiota ablation by antibiotic exposure protected against the hepatotoxicity induced by cisplatin. Interestingly, mice treated with antibiotics dampened the mitogen-activated protein kinase pathway activation and promoted nuclear factor erythroid 2-related factor 2 nuclear translocation, resulting in decreased levels of both inflammation and oxidative stress in the liver. FMT also confirmed the role of microbiota in individual susceptibility to cisplatin-induced hepatotoxicity. Conclusions This study elucidated the mechanism by which gut microbiota mediates cisplatin hepatotoxicity through enhanced inflammatory response and oxidative stress. This knowledge may help develop novel therapeutic approaches that involve targeting the composition and metabolites of microbiota.


Sign in / Sign up

Export Citation Format

Share Document