α-Lipoic acid modulates liver fibrosis: A cross talk between TGF-β1, autophagy, and apoptosis

2019 ◽  
Vol 39 (4) ◽  
pp. 440-450 ◽  
Author(s):  
WH El-Maadawy ◽  
OA Hammam ◽  
SH Seif el-Din ◽  
NM El-Lakkany

Autophagy and apoptosis are important players in the progression of hepatic fibrosis via activation of hepatic stellate cells (HSCs). Despite the recently depicted antifibrotic effects of alpha-lipoic acid (ALA), however, its modulatory effects on HSCs autophagy remain unverified. Our study aimed to elucidate the underlying antifibrotic mechanisms through which ALA mediates HSC autophagy and apoptosis. Liver fibrosis was induced via thioacetamide (TAA) intoxication in rats; TAA-intoxicated rats were treated with either silymarin or ALA. Effect of ALA on biochemical parameters and immunohistopathological examinations was measured and compared to silymarin. ALA restored normal hepatic architecture (S1 vs. S4), liver functions, hepatic glutathione, and transforming growth factor-β1 levels. ALA ameliorated hepatic levels of malondialdehyde, platelet-derived growth factor, tissue inhibitor metalloproteinases-1, hydroxyproline, and expression of alpha-smooth muscle actin. Moreover, ALA significantly reduced messenger RNA expression of LC3-II genes and triggered caspase-3 expression. Interestingly, ALA exhibited superior activities over silymarin regarding suppression of proliferation, activation and autophagy of HSCs, collagen deposition, and induction of HSCs apoptosis. In conclusion, treatment of TAA-intoxicated rats with ALA inhibited autophagy and induced apoptotic clearance of activated HSCs. Accordingly, this study provides mechanistic insights into the possible applicability of ALA in the treatment of hepatic fibrosis.

2021 ◽  
Vol 8 ◽  
Author(s):  
Wenxuan Jiao ◽  
Man Bai ◽  
Hanwei Yin ◽  
Jiayi Liu ◽  
Jing Sun ◽  
...  

Liver fibrosis is an important stage in the progression of liver injury into cirrhosis or even liver cancer. Hepatic stellate cells (HSCs) are induced by transforming growth factor-β1 (TGF-β1) to produce α-smooth muscle actin (α-SMA) and collagens in liver fibrosis. Butaselen (BS), which was previously synthesized by our group, is an organic selenium compound that exerts antioxidant and tumor cell apoptosis–promoting effects by inhibiting the thioredoxin (Trx)/thioredoxin reductase (TrxR) system. The aim of this study was to investigate the potential effects of BS on liver fibrosis and explore the underlying molecular mechanisms of its action. Liver fibrosis models were established using male BALB/c mice through intraperitoneal injection of CCl4. BS was administered orally once daily at a dose of 36, 90, or 180 mg/kg. Silymarin (Si), which is a drug used for patients with nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, was administered at a dose of 30 mg/kg per day as a control. The action mechanisms of BS against liver fibrosis progression were examined in HSCs. The study revealed that the activity and expression levels of TrxR were elevated in the mouse liver and serum after CCl4-induced liver fibrosis. Oral administration of BS relieved the pathological state of mice with liver fibrosis, showing significant therapeutic effects against liver fibrosis. Moreover, BS not only induced HSC apoptosis but also inhibited the production of α-SMA and collagens by HSCs by downregulating the TGF-β1 expression and blocking the TGF-β1/Smads pathway. The results of the study indicated that BS inhibited liver fibrosis by regulating the TGF-β1/Smads pathway.


2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Ying-Jen Chen ◽  
Shih-Ming Huang ◽  
Ming-Cheng Tai ◽  
Jiann-Torng Chen ◽  
Chang-Min Liang

Abstract Background Transforming growth factor (TGF) family members play important roles in the regulation of corneal integrity, and the pathogenesis of corneal fibrosis. Currently, there are no effective agents targeting TGF-β signaling to diminish corneal fibrosis. Glucosamine (GlcN), which is widely used in the treatment of osteoarthritis, abrogates the morphologic effects of TGF-β2 on retinal pigmented epithelial cells in a mouse disease model. Here, we sought to determine whether GlcN would exert beneficial effects against TGF-β1-induced corneal fibrosis. Methods In human corneal fibroblasts (HCFs) treated with GlcN, the expression of Krüppel-like factor 4 (KLF4) and its downstream signaling effects were determined in the presence and absence of TGF-β1 using immunoblot analysis. We further explored GlcN inhibition of fibroblast-to-myofibroblast differentiation via KLF4 siRNA. The effect of cycloheximide on KLF4 protein levels with or without GlcN administration was assessed to determine whether GlcN affects the stability of the KLF4 protein. Results In HCFs, GlcN induced the expression of KLF4, which regulated the maturation and maintenance of the ocular surface. GlcN partially suppressed the TGF-β1-induced expression of alpha-smooth muscle actin (α-SMA) and reduced the collagen contraction capacity in HCFs, suggesting a decrease in fibroblast-to-myofibroblast differentiation. This effect appeared to be mediated through suppression of Smad2 phosphorylation and ERK-dependent signaling. The levels of KLF4 mRNA were increased by GlcN and decreased by TGF-β1 and the TGF-β1-induced α-SMA mRNA expression was upregulated when the KLF4 gene was silenced. GlcN also appeared to stabilize the KLF4 protein, reducing its turnover in corneal fibroblasts. Conclusion These findings shed light on a novel mechanism by which GlcN suppresses TGF-β1-induced fibroblast-to-myofibroblast differentiation through the upregulation of KLF4 expression. Current strategies for treating corneal fibrosis were not effective. Elevating KLF4 levels through the use of GlcN might provide an effective alternative to alleviate the development and progression of corneal fibrosis.


2019 ◽  
Vol 236 (12) ◽  
pp. 1428-1434
Author(s):  
Thomas Stahnke ◽  
Beata Gajda-Derylo ◽  
Oliver Stachs ◽  
Rudolf F. Guthoff ◽  
Anselm Jünemann ◽  
...  

Zusammenfassung Hintergrund Der Langzeiterfolg fistulierender Therapiekonzepte zur Behandlung des Glaukoms wird im Wesentlichen durch überschießende Vernarbungsreaktionen (Fibrose) limitiert. Zytostatika wie Mitomycin C können die Fibrose zwar verhindern, sind jedoch häufig mit Nebenwirkungen assoziiert. Spezifisch wirkende Antifibrotika sind derzeit nicht im klinischen Einsatz. Daher beschreibt diese Studie einen systembiologischen Ansatz, mit dem durch eine dedizierte Bioinformatik-Technologieplattform Wirkstoffe identifiziert und als Antifibrotikum repositioniert werden können. Material und Methoden Als Basis für den Wirkstoffidentifikationsprozess wurden differenzielle Genexpressionsdaten humaner Tenon-Fibroblasten (hTF) genutzt, die von unbehandelten hTF und von mit Transforming Growth Factor β1 (TGF-β1) stimulierten hTF („fibrotische Fibroblasten“) mittels Next-Generation Sequencing (NGS) erhoben wurden. Diese Daten wurden mit dem bioinformatischen Werkzeug „FocusHeuristics“ gefiltert. Im Vergleich mit der Connectivity-Map-Datenbank wurden der Fibrose entgegenwirkende Wirkstoffe identifiziert. Die Evaluierung eines potenziell erfolgversprechenden Wirkstoffs als Antifibrotikum wurde an hTF mittels indirekter Immunfluoreszenz in vitro durchgeführt. Ergebnisse Die Analyse der Genexpressionsdaten führte zur Identifikation mehrerer in fibrotische Prozesse involvierter Interaktionsnetzwerke von Genen bzw. Proteinen. Eines dieser Netzwerke beinhaltet das Zytokin Bone morphogenic Protein 6 (BMP6) sowie Interleukin 6 (IL6) und Fibroblast Growth Factor 1 (FGF1). Ein weiteres relevantes Netzwerk konnte rund um das CD34-Gen (CD34: Cluster of Differentiation 34) identifiziert werden. Der Vergleich dieser Daten mit denen der Connectivity Map ermöglichte die Identifikation eines entsprechend invers wirkenden Wirkstoffs. Dessen Evaluierung im fibrotischen Zellkulturmodell in vitro mittels indirekter Immunfluoreszenz führte zu einer deutlichen Expressionsreduktion der fibrotischen Markerproteine Fibronektin und Alpha-smooth Muscle Actin (α-SMA), womit die vorhergesagte antifibrotische Wirkung bestätigt werden konnte. Schlussfolgerung Systembiologische Ansätze können für die Identifikation von antifibrotischen Wirkstoffkandidaten zur Vermeidung postoperativer Fibrose genutzt werden und sollten sich über die Erfassung differenzieller Genexpressionsdaten weiterer okularer Zellen oder Gewebe auch auf andere ophthalmologische Anwendungsfelder transferieren lassen.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1628
Author(s):  
Kaj E. C. Blokland ◽  
Habibie Habibie ◽  
Theo Borghuis ◽  
Greta J. Teitsma ◽  
Michael Schuliga ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor survival. Age is a major risk factor, and both alveolar epithelial cells and lung fibroblasts in this disease exhibit features of cellular senescence, a hallmark of ageing. Accumulation of fibrotic extracellular matrix (ECM) is a core feature of IPF and is likely to affect cell function. We hypothesize that aberrant ECM deposition augments fibroblast senescence, creating a perpetuating cycle favouring disease progression. In this study, primary lung fibroblasts were cultured on control and IPF-derived ECM from fibroblasts pretreated with or without profibrotic and prosenescent stimuli, and markers of senescence, fibrosis-associated gene expression and secretion of cytokines were measured. Untreated ECM derived from control or IPF fibroblasts had no effect on the main marker of senescence p16Ink4a and p21Waf1/Cip1. However, the expression of alpha smooth muscle actin (ACTA2) and proteoglycan decorin (DCN) increased in response to IPF-derived ECM. Production of the proinflammatory cytokines C-X-C Motif Chemokine Ligand 8 (CXCL8) by lung fibroblasts was upregulated in response to senescent and profibrotic-derived ECM. Finally, the profibrotic cytokines transforming growth factor β1 (TGF-β1) and connective tissue growth factor (CTGF) were upregulated in response to both senescent- and profibrotic-derived ECM. In summary, ECM deposited by IPF fibroblasts does not induce cellular senescence, while there is upregulation of proinflammatory and profibrotic cytokines and differentiation into a myofibroblast phenotype in response to senescent- and profibrotic-derived ECM, which may contribute to progression of fibrosis in IPF.


2018 ◽  
Vol 51 (5) ◽  
pp. 2111-2122 ◽  
Author(s):  
Yi-Bing Hu ◽  
Xiao-Ting Ye ◽  
Qing-Qing Zhou ◽  
Rong-Quan Fu

Background/Aims: Sestrin 2 is associated with the pathophysiology of several diseases. The aim of this study was to investigate the effects and potential mechanisms of Sestrin 2 in rat hepatic stellate cells (HSCs) during liver fibrogenesis. Methods: In this study, Sestrin 2 protein expression was detected in rat HSC-T6 cells challenged with transforming growth factor-β (TGF-β) and in mice treated with carbon tetrachloride (CCl4), a well-known model of hepatic fibrosis. Next, HSC-T6 cells and fibrotic mice were transfected with lentivirus. The mRNA expression levels of markers of liver fibrosis [alpha-smooth muscle actin (α-SMA) and collagen 1A1 (Col1A1)] were analyzed by quantitative reverse transcription–polymerase chain reaction (RT-PCR). Cell death and proliferation were evaluated by the MTT assay, and biochemical markers of liver damage in serum [alanine transaminase (ALT) and aspartate transaminase (AST)] were also measured using a biochemical analyzer. Histopathological examination was used to evaluate the degree of liver fibrosis, and protein expression [phospho-adenosine monophosphate-activated protein kinase (p-AMPK), AMPK, phospho-mammalian target of rapamycin (p-mTOR), and mTOR] was determined by western blotting. Results: We found that Sestrin 2 was elevated in both the HSC-T6 cell and hepatic fibrosis models. In vitro, overexpression of Sestrin 2 attenuated the mRNA levels of α-SMA and Col1A1, suppressed α-SMA protein expression, and modulated HSC-T6 cell proliferation. In vivo, overexpression of Sestrin 2 reduced the ALT and AST levels as well as the α-SMA and Col1A1 protein expression in the CCl4 model of liver fibrosis. Moreover, the degree of liver fibrosis was ameliorated. Interestingly, overexpression of Sestrin 2 increased p-AMPK but decreased p-mTOR protein expression. Conclusion: Our findings indicate that Sestrin 2 may attenuate the activation of HSCs and ameliorate liver fibrosis, most likely via upregulation of AMPK phosphorylation and suppression of the mTOR signaling pathway.


2018 ◽  
Vol 132 (21) ◽  
pp. 2299-2322 ◽  
Author(s):  
Jinfang Bao ◽  
Yingfeng Shi ◽  
Min Tao ◽  
Na Liu ◽  
Shougang Zhuang ◽  
...  

Autophagy has been identified as a cellular process of bulk degradation of cytoplasmic components and its persistent activation is critically involved in the renal damage induced by ureteral obstruction. However, the role and underlying mechanisms of autophagy in hyperuricemic nephropathy (HN) remain unknown. In the present study, we observed that inhibition of autophagy by 3-methyladenine (3-MA) abolished uric acid-induced differentiation of renal fibroblasts to myofibroblasts and activation of transforming growth factor-β1 (TGF-β1), epidermal growth factor receptor (EGFR), and Wnt signaling pathways in cultured renal interstitial fibroblasts. Treatment with 3-MA also abrogated the development of HN in vivo as evidenced by improving renal function, preserving renal tissue architecture, reducing the number of autophagic vacuoles, and decreasing microalbuminuria. Moreover, 3-MA was effective in attenuating renal deposition of extracellular matrix (ECM) proteins and expression of α-smooth muscle actin (α-SMA) and reducing renal epithelial cells arrested at the G2/M phase of cell cycle. Injury to the kidney resulted in increased expression of TGF-β1 and TGFβ receptor I, phosphorylation of Smad3 and TGF-β-activated kinase 1 (TAK1), and activation of multiple cell signaling pathways associated with renal fibrogenesis, including Wnt, Notch, EGFR, and nuclear factor-κB (NF-κB). 3-MA treatment remarkably inhibited all these responses. In addition, 3-MA effectively suppressed infiltration of macrophages and lymphocytes as well as release of multiple profibrogenic cytokines/chemokines in the injured kidney. Collectively, these findings indicate that hyperuricemia-induced autophagy is critically involved in the activation of renal fibroblasts and development of renal fibrosis and suggest that inhibition of autophagy may represent a potential therapeutic strategy for HN.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Nouf M. Al-Rasheed ◽  
Hala A. Attia ◽  
Raeesa A. Mohamad ◽  
Nawal M. Al-Rasheed ◽  
Maha A. Al-Amin ◽  
...  

Previous data indicated the protective effect of date fruit extract on oxidative damage in rat liver. However, the hepatoprotective effects via other mechanisms have not been investigated. This study was performed to evaluate the antifibrotic effect of date flesh extract (DFE) or date pits extract (DPE) via inactivation of hepatic stellate cells (HSCs), reducing the levels of inflammatory, fibrotic and angiogenic markers. Coffee was used as reference hepatoprotective agent. Liver fibrosis was induced by injection of CCl4(0.4 mL/kg) three times weekly for 8 weeks. DFE, DPE (6 mL/kg), coffee (300 mg/kg), and combination of coffee + DFE and coffee + DPE were given to CCl4-intoxicated rats daily for 8 weeks. DFE, DPE, and their combination with coffee attenuated the elevated levels of inflammatory cytokines including tumor necrosis factor-α, interleukin-6, and interleukin-1β. The increased levels of transforming growth factor-β1 and collagen deposition in injured liver were alleviated by both extracts. CCl4-induced expression ofα-smooth muscle actin was suppressed indicating HSCs inactivation. Increased angiogenesis was ameliorated as revealed by reduced levels and expression of vascular endothelial growth factor and CD31. We concluded that DFE or DPE could protect liver via different mechanisms. The combination of coffee with DFE or DPE may enhance its antifibrotic effects.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Farouk K. El-Baz ◽  
Abeer Salama ◽  
Sami I. Ali ◽  
Rania Elgohary

Hepatic fibrosis is a consequence of chronic liver diseases. Metalloproteinase and its inhibitor have crucial roles in the resolution of liver fibrosis. The current relevant study is aimed to evaluate the therapeutic effect of Haematococcus pluvialis (H. pluvialis) extract, astaxanthin-rich fraction, astaxanthin ester-rich fraction, and β-carotene-rich fraction as well as their mechanisms of action in curing hepatic fibrosis induced by thioacetamide (TAA). Liver fibrosis was induced using TAA (intraperitoneal injection, two times a week for 6 weeks), in a rat model and H. pluvialis extract (200 mg/kg), and other fractions (30 mg/kg) were orally administered daily for 4 weeks after the last TAA injection. Based on HPLC analysis, H. pluvialis extract contains β-carotene (12.95 mg/g, extract) and free astaxanthin (10.85 mg/g, extract), while HPLC/ESI-MS analysis revealed that H. pluvialis extract contains 28 carotenoid compounds including three isomers of free astaxanthin, α or β-carotene, lutein, 14 astaxanthin mono-esters, 5 astaxanthin di-esters, and other carotenoids. H. pluvialis and its fractions reduced liver enzymes, nitric oxide, collagen 1, alpha-smooth muscle actin, and transforming growth factor-beta as well as elevated catalase antioxidant activity compared to the TAA group. Also, H. pluvialis extract and its fractions exceedingly controlled the balance between metalloproteinase and its inhibitor, activated Kupffer cells proliferation, and suppressed liver apoptosis, necrobiosis, and fibrosis. These findings conclude that H. pluvialis extract and its fractions have an antifibrotic effect against TAA-induced liver fibrosis by regulating the oxidative stress and proinflammatory mediators, suppressing multiple profibrogenic factors, and modulating the metalloproteinase and its inhibitor pathway, recommending H. pluvialis extract and its fractions for the development of new effective medicine for treating hepatic fibrosis disorders.


Sign in / Sign up

Export Citation Format

Share Document