scholarly journals Circular RNA_CNST Promotes the Tumorigenesis of Osteosarcoma Cells by Sponging miR-421

2020 ◽  
Vol 29 ◽  
pp. 096368972092614
Author(s):  
Ji-Hai Wang ◽  
Xue-Jian Wu ◽  
Yong-Zhuang Duan ◽  
Feng Li

Circular RNAs (circRNAs) act crucial roles in the progression of multiple malignancies including osteosarcoma (OS). But, the underlying mechanisms by which hsa_circ_0017311 (circCNST) contributes to the tumorigenesis of OS remain poorly understood. Our present study aimed to explore the role and mechanisms of circCNST in OS tumorigenesis. The differentially expressed circRNAs were identified by the Gene Expression Omnibus database. The association of circCNST with clinicopathological features and prognosis in patients with OS was analyzed by RNA fluorescence in situ hybridization (FISH) and quantitative real-time polymerase chain reaction (PCR) analysis. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation assays, and a xenograft tumor model were conducted to assess the role of circCNST in OS cells in vitro and in vivo. CircCNST-specific binding with miR-421 was confirmed by FISH, luciferase gene report, and RNA immunoprecipitation assays. As a result, we found that the expression levels of circCNST were dramatically increased in OS tissues and cell lines as compared with the adjacent normal tissues, and it was associated with tumor size and poor survival in OS patients. Knockdown of circCNST repressed cell viability, colony formation, and xenograft tumor growth, while restored expression of circCNST reversed these effects. Furthermore, circCNST was colocalized with miR-421 in the cytoplasm and acted as a sponge of miR-421, which attenuated circCNST-induced proliferation-promoting effects in OS cells by targeting SLC25A3. In conclusion, our findings demonstrate that circCNST promotes the tumorigenesis of OS cells by sponging miR-421, and provides a potential biomarker for patients with OS.

2021 ◽  
Author(s):  
Jun Wan ◽  
Guanggui Ding ◽  
Min Zhou ◽  
Xiean Ling ◽  
ZhanPeng Rao

Abstract Background: Increasing evidence indicates that the aberrant expression of circular RNAs (circRNAs) is involved in the pathogenesis and progression of lung adenocarcinoma (LUAC). However, the function and molecular mechanisms of hsa_circ_0002483 (circ_0002483) in LUAC remain unclear. Methods: The association between circ_0002483 expression and clinicopathological characteristics and prognosis in patients with LUAC was analyzed by fluorescence in situ hybridization. The functional experiments such as MTT, colony formation and Transwell assays and a subcutaneous tumor model were conducted to determine the role of circ_0002483 in LUAC cells. The specific binding between circ_0002483 and miR-125a-3p was validated by RNA immunoprecipitation, luciferase gene report and qRT-PCR assays. The effects of circ_0002483 on miR-125a-3p-mediated C-C motif chemokine ligand 4 (CCL4)-CCR5 axis were assessed by Western blot analysis.Results: We found that circ_0002483 was upregulated in LUAC tissue samples and associated with TNM stage and poor survival in patients with LUAC. Knockdown of circ_0002483 inhibited proliferation, colony formation and invasion of A549 and PC9 cells in vitro, whereas overexpression of circ_0002483 harbored the opposite effects. Furthermore, circ_0002483 sponged miR-125a-3p and negatively modulated its expression. CCL4 was identified as a direct target of miR-125a-3p. The rescue experiments showed that miR-125a-3p mimics reversed the tumor-promoting effects of circ_0002483 by targeting CCL4-CCR5 axis in A549 and PC9 cells. In addition, the in vivo experiment further validated that knockdown of circ_0002483 repressed tumor growth. Conclusions: Our findings demonstrated that circ_0002483 could act as a sponge of miR-125a-3p to upregulate CCL4-CCR5 axis, contributing to the tumorigenesis of LUAC, and represent a potential therapeutic target for LUAC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jun Wan ◽  
Guanggui Ding ◽  
Min Zhou ◽  
Xiean Ling ◽  
Zhanpeng Rao

Abstract Background Increasing evidence indicates that the aberrant expression of circular RNAs (circRNAs) is involved in the pathogenesis and progression of lung adenocarcinoma (LUAC). However, the function and molecular mechanisms of hsa_circ_0002483 (circ_0002483) in LUAC remain unclear. Methods The association between circ_0002483 expression and clinicopathological characteristics and prognosis in patients with LUAC was analyzed by fluorescence in situ hybridization. The functional experiments such as CCK-8, colony formation and Transwell assays and a subcutaneous tumor model were conducted to determine the role of circ_0002483 in LUAC cells. The specific binding between circ_0002483 and miR-125a-3p was validated by RNA immunoprecipitation, luciferase gene report and qRT-PCR assays. The effects of circ_0002483 on miR-125a-3p-mediated C-C motif chemokine ligand 4 (CCL4)-CCR5 axis were assessed by Western blot analysis. Results We found that circ_0002483 was upregulated in LUAC tissue samples and associated with Tumor Node Metastasis (TNM) stage and poor survival in patients with LUAC. Knockdown of circ_0002483 inhibited proliferation, colony formation and invasion of A549 and PC9 cells in vitro, whereas overexpression of circ_0002483 harbored the opposite effects. Furthermore, circ_0002483 sponged miR-125a-3p and negatively regulated its expression. CCL4 was identified as a direct target of miR-125a-3p. The rescue experiments showed that miR-125a-3p mimics reversed the tumor-promoting effects of circ_0002483 by targeting CCL4-CCR5 axis in A549 and PC9 cells. In addition, the in vivo experiment further validated that knockdown of circ_0002483 repressed tumor growth. Conclusions Our findings demonstrated that circ_0002483 could act as a sponge of miR-125a-3p to upregulate CCL4-CCR5 axis, contributing to the tumorigenesis of LUAC, and represent a potential therapeutic target for LUAC.


2018 ◽  
Vol 51 (6) ◽  
pp. 2872-2886 ◽  
Author(s):  
Yuxin Dai ◽  
Yongkun Wan ◽  
Mingke Qiu ◽  
Shuqing Wang ◽  
Chang Pan ◽  
...  

Background/Aims: Dysregulation of long noncoding RNAs (lncRNAs) is associated with the proliferation and metastasis in a variety of cancers, of which lncRNA maternally expressed gene 3 (MEG3) has been indicated as a tumor suppressor in multiple malignancies. However, the underlying mechanisms by which MEG3 contributes to human hemangiomas (HAs) remain undetermined. Methods: qRT-PCR analysis was performed to examine the expression levels of MEG3 and VEGF in proliferating or involuting phase HAs. MTT, colony formation assay, flow cytometry analysis and a subcutaneous xenograft tumor model were conducted to assess the effects of MEG3 on the HAs tumorigenesis. The interaction between MEG3 and miRNAs or their downstream pathways was evidenced by bioinformatic analysis, luciferase report assays, RNA immunoprecipitation (RIP) assay. and Western blot analysis. Results: The expression of MEG3 was substantially decreased and had a negative correlation with VEGF expression in proliferating phase HAs, as compared with the involuting phase HAs and normal skin tissues. Ectopic expression of MEG3 suppressed cell proliferation, colony formation and induced cycle arrest in vitro and in vivo, followed by the downregulation of VEGF and cyclinD1, but knockdown of MEG3 reversed these effects. Furthermore, MEG3 was verified to act as a sponge of miR-494 in HAs cells, and miR-494 counteracted MEG3-caused anti-proliferative effects by regulating PTEN/PI3K/AKT pathway, and exhibited the negative correlation with MEG3 and PTEN expression in proliferating phase HAs. Conclusion: Our findings suggested that lncRNA MEG3 inhibited HAs tumorigenesis by sponging miR-494 and regulating PTEN/PI3K/AKT pathway.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Xie ◽  
Xiaofeng Hang ◽  
Wensheng Xu ◽  
Jing Gu ◽  
Yuanjing Zhang ◽  
...  

Abstract Background Most of the biological functions of circular RNAs (circRNAs) and the potential underlying mechanisms in hepatocellular carcinoma (HCC) have not yet been discovered. Methods In this study, using circRNA expression data from HCC tumor tissues and adjacent tissues from the Gene Expression Omnibus database, we identified out differentially expressed circRNAs and verified them by qRT-PCT. Functional experiments were performed to evaluate the effects of circFAM13B in HCC in vitro and in vivo. Results We found that circFAM13B was the most significantly differentially expressed circRNA in HCC tissue. Subsequently, in vitro and in vivo studies also demonstrated that circFAM13B promoted the proliferation of HCC. Further studies revealed that circFAM13B, a sponge of miR-212, is involved in the regulation of E2F5 gene expression by competitively binding to miR-212, inhibits the activation of the P53 signalling pathway, and promotes the proliferation of HCC cells. Conclusions Our findings revealed the mechanism underlying the regulatory role played by circFAM13B, miR-212 and E2F5 in HCC. This study provides a new theoretical basis and novel target for the clinical prevention and treatment of HCC.


Epigenomics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 935-953 ◽  
Author(s):  
Fengjiao Han ◽  
Chaoqin Zhong ◽  
Wei Li ◽  
Ruiqing Wang ◽  
Chen Zhang ◽  
...  

Aim: Accumulating evidence has indicated that circular RNAs (circRNAs) are involved in cancer biology. However, their roles in acute myeloid leukemia (AML) remain unclear. Therefore, we aimed to define novel circRNAs involved the development and progression of AML. Materials & methods: We used circRNAs microarray to determine the differential expression profile. Quantitative reverse transcription PCR analyzed the expression of hsa_circ_0001947. The siRNA assesses the function of hsa_circ_0001947 in vitro and in vivo. A dual-luciferase and mimics/inhibitor were to determine the target gene relationship. Results: hsa_circ_0001947 functions as a tumor inhibitor to suppress AML cell proliferation through hsa-miR-329-5p/ CREBRF axis. Conclusion: hsa_circ_0001947 may be as a novel potential biomarker for the treatment of AML.


2015 ◽  
Vol 211 (1) ◽  
pp. 105-122 ◽  
Author(s):  
Zhipeng Zou ◽  
Juan Chen ◽  
Anling Liu ◽  
Xuan Zhou ◽  
Qiancheng Song ◽  
...  

Previous studies have reported that mTORC2 promotes cell survival through phosphorylating AKT and enhancing its activity. We reveal another mechanism by which mTORC2 controls apoptosis. Inactivation of mTORC2 promotes binding of CIP2A to PP2A, leading to reduced PP2A activity toward c-Myc serine 62 and, consequently, enhancement of c-Myc phosphorylation and expression. Increased c-Myc activity induces transcription of pri-miR-9-2/miR-9-3p, in turn inhibiting expression of E2F1, a transcriptional factor critical for cancer cell survival and tumor progression, resulting in enhanced apoptosis. In vivo experiments using B cell–specific mTORC2 (rapamycin-insensitive companion of mTOR) deletion mice and a xenograft tumor model confirmed that inactivation of mTORC2 causes up-regulation of c-Myc and miR-9-3p, down-regulation of E2F1, and consequent reduction in cell survival. Conversely, Antagomir-9-3p reversed mTORC1/2 inhibitor–potentiated E2F1 suppression and resultant apoptosis in xenograft tumors. Our in vitro and in vivo findings collectively demonstrate that mTORC2 promotes cell survival by stimulating E2F1 expression through a c-Myc– and miR-9-3p–dependent mechanism.


2019 ◽  
Vol 23 (3) ◽  
pp. 437-448 ◽  
Author(s):  
Zizhen Zhang ◽  
Chaojie Wang ◽  
Yeqian Zhang ◽  
Site Yu ◽  
Gang Zhao ◽  
...  

Abstract Background Circular RNAs (circRNAs) as a novel subgroup of non-coding RNAs act a critical role in the pathogenesis of gastric cancer (GC). However, the underlying mechanisms by which hsa_circ_0003855 (circDUSP16) contributes to GC are still undocumented. Materials The differentially expressed circRNAs were identified by GEO database. The association of circDUSP16 or miR-145-5p expression with clinicopathological features and prognosis in GC patients was analyzed by FISH and TCGA-seq data set. Loss- and gain-of-function experiments as well as a xenograft tumor model were performed to assess the role of circDUSP16 in GC cells. circDUSP16-specific binding with miR-145-5p was confirmed by bioinformatic analysis, luciferase reporter, and RNA immunoprecipitation assays. Results The expression levels of circDUSP16 were markedly increased in GC tissue samples and acted as an independent prognostic factor of poor survival in patients with GC. Knockdown of circDUSP16 repressed the cell viability, colony formation, and invasive potential in vitro and in vivo, but ectopic expression of circDUSP16 reversed these effects. Moreover, circDUSP16 possessed a co-localization with miR-145-5p in the cytoplasm, and acted as a sponge of miR-145-5p, which attenuated circDUSP16-induced tumor-promoting effects and IVNS1ABP expression in GC cells. MiR-145-5p had a negative correlation with circDUSP16 expression and its low expression was associated with poor survival in GC patients. Conclusions CircDUSP16 facilitates the tumorigenesis and invasion of GC cells by sponging miR-145-5p, and may provide a novel therapeutic target for GC.


2021 ◽  
pp. 1-8
Author(s):  
Litty Joseph ◽  
Lakshmi PS ◽  
Litty Joseph

Background and Aim: Cancer is a disease of complex aetiology and is characterised by uncontrolled growth of abnormal cells. It is a major worldwide health problem. Many natural and synthetic chalcone or their derivatives showed anticancer activities. The aim of the present study is to evaluate the anticancer activity of novel chalcone derivatives and also to establish possible mechanism of action. Materials and Methods: A series of chalcones 3-(3-phenoxyphenyl)-1-phenylprop-2-en-1-one (2a); 1-(4-chlorophenyl)-3-(3-phenoxyphenyl) prop-2-en-1-one (2b); 1-(4-fluorophenyl)-3-(3-phenoxyphenyl) prop-2-en-1-one (2c); 1-(4-Nitro-phenyl)-3-(3-phenoxy-phenyl)prop-2-en-1-one (2d); 1-(4-methoxyphenyl)-3-(3-phenoxyphenyl) prop-2-en-1-one(2e) were evaluated for the cytotoxic activity both in vitro and in vivo. The in vivo antitumor activity of these compounds was estimated on Daltons Ascites Lymphoma induced solid tumor model. The effect of promising compound was further analysed by flow cytometer and RT- PCR analysis. Results and Conclusion: 1-(4-methoxyphenyl)-3-(3-phenoxyphenyl) prop-2-en-1-one and 1-(4- chlorophenyl)-3-(3-phenoxyphenyl) prop-2-en-1-one was showed in vitro cytotoxic activity, DNA damage and antiproliferative activity. DLA induced solid tumor model suggested that 1-(4-methoxyphenyl)-3-(3- phenoxy phenyl) prop-2-en-1-one significantly reduced the tumor volume, increase the percentage tumor inhibition and reverse the haematological parameters. Flow cytometry analysis concluded that the compound induces cell cycle arrest at G0/G1 phase due to the over expression of p21. 1-(4-methoxyphenyl)-3-(3- phenoxy phenyl) prop-2-en-1-one may be a potential agent for cancer treatment.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yixiang Huang ◽  
Wenfang Zheng ◽  
Changle Ji ◽  
Xuehui Wang ◽  
Yunhe Yu ◽  
...  

AbstractBreast cancer (BC) is one of the most fatal diseases among women all over the world. Non-coding RNAs including circular RNAs (circRNAs) have been reported to be involved in different aspects during tumorigenesis and progression. In this study, we aimed to explore the biological functions and underlying mechanism of circRPPH1 in BC. Candidate circRNAs were screened in dataset GSE101123 from Gene Expression Omnibus (GEO) database and a differentially expressed circRNA, circRPPH1, was discovered in BC. CircRPPH1 expression was higher in the cancerous tissue compared to paired adjacent tissue. Further in vitro and in vivo experiments indicated that circRPPH1 acted as an oncogene in BC. In addition, circRPPH1 was mainly localized in cytoplasm and played the role of miR-512-5p sponge. By sequestering miR-512-5p from the 3′-UTR of STAT1, circRPPH1 inhibited the suppressive role of miR-512-5p, stabilized STAT1 mRNA in BC and finally affected BC progression. In conclusion, these findings indicated that circRPPH1 acted as an oncogene and regulated BC progression via circRPPH1-miR-512-5p-STAT1 axis, which might provide a potential therapeutic target for BC treatment.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lei Zhang ◽  
Ranran Yu ◽  
Chunhua Li ◽  
Yu Dang ◽  
Xiaoyu Yi ◽  
...  

Abstract Background Emerging evidence reveals that the initiation and development of human cancers, including colorectal cancer (CRC), are associated with the deregulation of circular RNAs (circRNAs). Our study intended to disclose the role of circ_0026416 in the malignant behaviors of CRC. Methods The detection for circ_0026416 expression, miR-545-3p expression, and myosin VI (MYO6) mRNA expression was performed using quantitative real-time PCR (qPCR). CCK-8 assay, colony formation assay, transwell assay, and flow cytometry assay were applied for functional analysis to monitor cell proliferation, migration, invasion, and apoptosis. The protein levels of MYO6 and epithelial mesenchymal-transition (EMT) markers were detected by western blot. Mouse models were used to determine the role of circ_0026416 in vivo. The potential relationship between miR-545-3p and circ_0026416 or MYO6 was verified by dual-luciferase reporter assay and RIP assay. Results The expression of circ_0026416 was increased in CRC tumor tissues and cell lines. Circ_0026416 downregulation inhibited CRC cell proliferation, colony formation, migration, invasion, and EMT but induced cell apoptosis in vitro, and circ_0026416 knockdown also blocked tumor growth in vivo. MiR-545-3p was a target of circ_0026416, and rescue experiments indicated that circ_0026416 knockdown blocked CRC development by enriching miR-545-3p. In addition, miR-545-3p targeted MYO6 and inhibited MYO6 expression. MiR-545-3p enrichment suppressed CRC cell malignant behaviors by sequestering MYO6. Importantly, circ_0026416 knockdown depleted MYO6 expression by enriching miR-545-3p. Conclusion Circ_0026416 downregulation blocked the development of CRC through depleting MYO6 expression by enriching miR-545-3p. Highlights Circ_0026416 downregulation inhibits CRC development in vitro and in vivo. Circ_0026416 regulates the expression of MYO6 by targeting miR-545-3p. Circ_0026416 governs the miR-545-3p/MYO6 axis to regulate CRC progression.


Sign in / Sign up

Export Citation Format

Share Document