scholarly journals Circular RNA hsa_circ_0002483 promotes growth and invasion of lung adenocarcinoma by sponging miR-125a-3p

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jun Wan ◽  
Guanggui Ding ◽  
Min Zhou ◽  
Xiean Ling ◽  
Zhanpeng Rao

Abstract Background Increasing evidence indicates that the aberrant expression of circular RNAs (circRNAs) is involved in the pathogenesis and progression of lung adenocarcinoma (LUAC). However, the function and molecular mechanisms of hsa_circ_0002483 (circ_0002483) in LUAC remain unclear. Methods The association between circ_0002483 expression and clinicopathological characteristics and prognosis in patients with LUAC was analyzed by fluorescence in situ hybridization. The functional experiments such as CCK-8, colony formation and Transwell assays and a subcutaneous tumor model were conducted to determine the role of circ_0002483 in LUAC cells. The specific binding between circ_0002483 and miR-125a-3p was validated by RNA immunoprecipitation, luciferase gene report and qRT-PCR assays. The effects of circ_0002483 on miR-125a-3p-mediated C-C motif chemokine ligand 4 (CCL4)-CCR5 axis were assessed by Western blot analysis. Results We found that circ_0002483 was upregulated in LUAC tissue samples and associated with Tumor Node Metastasis (TNM) stage and poor survival in patients with LUAC. Knockdown of circ_0002483 inhibited proliferation, colony formation and invasion of A549 and PC9 cells in vitro, whereas overexpression of circ_0002483 harbored the opposite effects. Furthermore, circ_0002483 sponged miR-125a-3p and negatively regulated its expression. CCL4 was identified as a direct target of miR-125a-3p. The rescue experiments showed that miR-125a-3p mimics reversed the tumor-promoting effects of circ_0002483 by targeting CCL4-CCR5 axis in A549 and PC9 cells. In addition, the in vivo experiment further validated that knockdown of circ_0002483 repressed tumor growth. Conclusions Our findings demonstrated that circ_0002483 could act as a sponge of miR-125a-3p to upregulate CCL4-CCR5 axis, contributing to the tumorigenesis of LUAC, and represent a potential therapeutic target for LUAC.

2021 ◽  
Author(s):  
Jun Wan ◽  
Guanggui Ding ◽  
Min Zhou ◽  
Xiean Ling ◽  
ZhanPeng Rao

Abstract Background: Increasing evidence indicates that the aberrant expression of circular RNAs (circRNAs) is involved in the pathogenesis and progression of lung adenocarcinoma (LUAC). However, the function and molecular mechanisms of hsa_circ_0002483 (circ_0002483) in LUAC remain unclear. Methods: The association between circ_0002483 expression and clinicopathological characteristics and prognosis in patients with LUAC was analyzed by fluorescence in situ hybridization. The functional experiments such as MTT, colony formation and Transwell assays and a subcutaneous tumor model were conducted to determine the role of circ_0002483 in LUAC cells. The specific binding between circ_0002483 and miR-125a-3p was validated by RNA immunoprecipitation, luciferase gene report and qRT-PCR assays. The effects of circ_0002483 on miR-125a-3p-mediated C-C motif chemokine ligand 4 (CCL4)-CCR5 axis were assessed by Western blot analysis.Results: We found that circ_0002483 was upregulated in LUAC tissue samples and associated with TNM stage and poor survival in patients with LUAC. Knockdown of circ_0002483 inhibited proliferation, colony formation and invasion of A549 and PC9 cells in vitro, whereas overexpression of circ_0002483 harbored the opposite effects. Furthermore, circ_0002483 sponged miR-125a-3p and negatively modulated its expression. CCL4 was identified as a direct target of miR-125a-3p. The rescue experiments showed that miR-125a-3p mimics reversed the tumor-promoting effects of circ_0002483 by targeting CCL4-CCR5 axis in A549 and PC9 cells. In addition, the in vivo experiment further validated that knockdown of circ_0002483 repressed tumor growth. Conclusions: Our findings demonstrated that circ_0002483 could act as a sponge of miR-125a-3p to upregulate CCL4-CCR5 axis, contributing to the tumorigenesis of LUAC, and represent a potential therapeutic target for LUAC.


2020 ◽  
Vol 29 ◽  
pp. 096368972092614
Author(s):  
Ji-Hai Wang ◽  
Xue-Jian Wu ◽  
Yong-Zhuang Duan ◽  
Feng Li

Circular RNAs (circRNAs) act crucial roles in the progression of multiple malignancies including osteosarcoma (OS). But, the underlying mechanisms by which hsa_circ_0017311 (circCNST) contributes to the tumorigenesis of OS remain poorly understood. Our present study aimed to explore the role and mechanisms of circCNST in OS tumorigenesis. The differentially expressed circRNAs were identified by the Gene Expression Omnibus database. The association of circCNST with clinicopathological features and prognosis in patients with OS was analyzed by RNA fluorescence in situ hybridization (FISH) and quantitative real-time polymerase chain reaction (PCR) analysis. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation assays, and a xenograft tumor model were conducted to assess the role of circCNST in OS cells in vitro and in vivo. CircCNST-specific binding with miR-421 was confirmed by FISH, luciferase gene report, and RNA immunoprecipitation assays. As a result, we found that the expression levels of circCNST were dramatically increased in OS tissues and cell lines as compared with the adjacent normal tissues, and it was associated with tumor size and poor survival in OS patients. Knockdown of circCNST repressed cell viability, colony formation, and xenograft tumor growth, while restored expression of circCNST reversed these effects. Furthermore, circCNST was colocalized with miR-421 in the cytoplasm and acted as a sponge of miR-421, which attenuated circCNST-induced proliferation-promoting effects in OS cells by targeting SLC25A3. In conclusion, our findings demonstrate that circCNST promotes the tumorigenesis of OS cells by sponging miR-421, and provides a potential biomarker for patients with OS.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Yujia Shi ◽  
Zhengdao Mao ◽  
Yanhua Huang ◽  
Yun Sun ◽  
Qi Cao ◽  
...  

Abstract The aims of the present study are to investigate the role of hydroxysteroid dehydrogenase-like 2 (HSDL2) in the progression of lung adenocarcinoma and illuminate the underlying molecular mechanisms. ShRNA targeting HSDL2 gene (siHSDL2) was utilized to knockdown (KD) HSDL2 expression. In vitro and in vivo experiments were carried out to investigate the effect of siHSDL2 on the progression of lung adenocarcinoma. Microarray hybridization and gene expression analysis were used to investigate effect of siHSDL2 on mRNA expression profile in lung cancer cell line H1299. Our data demonstrated that HSDL2 was up-regulated in lung adenocarcinoma tissue samples (P<0.001). Patients with high HSDL2 expression in cancer tissues had a worse overall survival (P<0.001). HSDL2 KD not only inhibited the proliferation, cell cycle, apoptosis, clone-formation, invasion and migration of lung adenocarcinoma cells in vitro (P<0.05), but also suppressed the growth and metastasis in vivo (P<0.05). HSDL2 KD resulted in up-regulation of 681 genes and down-regulation of 276 genes. HSDL2 KD down-regulated the protein expression and phosphorylation of protein kinase B β (AKT2) (P<0.001 and P<0.001, respectively) and protein expression of baculoviral IAP repeat-containing 3 (BIRC3; P=0.001), and up-regulated the phosphorylation of ERK (P<0.001). Rescue experiments showed that AKT2 overexpression reversed the suppression effect of siHSDL2 on cell proliferation (P<0.001), invasion (P<0.001) and migration (P<0.001) significantly. HSDL2 functions as an oncogene to promote the growth and metastasis of lung adenocarcinoma via promoting the expression of AKT2.


2021 ◽  
Vol 22 (3) ◽  
pp. 1390
Author(s):  
Julia Mester-Tonczar ◽  
Patrick Einzinger ◽  
Johannes Winkler ◽  
Nina Kastner ◽  
Andreas Spannbauer ◽  
...  

Circular RNAs (circRNAs) are crucial in gene regulatory networks and disease development, yet circRNA expression in myocardial infarction (MI) is poorly understood. Here, we harvested myocardium samples from domestic pigs 3 days after closed-chest reperfused MI or sham surgery. Cardiac circRNAs were identified by RNA-sequencing of rRNA-depleted RNA from infarcted and healthy myocardium tissue samples. Bioinformatics analysis was performed using the CIRIfull and KNIFE algorithms, and circRNAs identified with both algorithms were subjected to differential expression (DE) analysis and validation by qPCR. Circ-RCAN2 and circ-C12orf29 expressions were significantly downregulated in infarcted tissue compared to healthy pig heart. Sanger sequencing was performed to identify the backsplice junctions of circular transcripts. Finally, we compared the expressions of circ-C12orf29 and circ-RCAN2 between porcine cardiac progenitor cells (pCPCs) that were incubated in a hypoxia chamber for different time periods versus normoxic pCPCs. Circ-C12orf29 did not show significant DE in vitro, whereas circ-RCAN2 exhibited significant ischemia-time-dependent upregulation in hypoxic pCPCs. Overall, our results revealed novel cardiac circRNAs with DE patterns in pCPCs, and in infarcted and healthy myocardium. Circ-RCAN2 exhibited differential regulation by myocardial infarction in vivo and by hypoxia in vitro. These results will improve our understanding of circRNA regulation during acute MI.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kun Wu ◽  
Yuan-Yuan Mao ◽  
Nan-Nan Han ◽  
Hanjiang Wu ◽  
Sheng Zhang

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant neoplasm; it is associated with high morbidity and mortality. Thus, understanding the molecular mechanisms underlying its initiation and progression is critical for establishing the most appropriate treatment strategies. We found that urokinase-type plasminogen activator (PLAU1) was upregulated and associated with poor prognosis in HNSCC. Silencing of PLAU1 inhibited the proliferation, colony-formation, migration, and invasion abilities of HNSCC cells in vitro and reduced the expression of matrix metalloproteinase 1 (MMP1), whereas PLAU1 overexpression significantly enhanced the growth, the colony-formation, migration, and invasion abilities, and the xenograft tumor growth of HNSCC cells in vivo and increased the expression of MMP1. The Co-IP assay verified that PLAU1 interacted with MMP1. A positive correlation between PLAU1 and MMP1 expression was observed in HNSCC samples. si-RNAs against MMP1 reversed the aggressive effects of PLAU1 overexpression in HNSCC. Taken together, our data revealed that PLAU1 facilitated HNSCC cell proliferation, invasion, and metastasis via interaction with MMP1.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Hongli Li ◽  
Qingjie Mu ◽  
Guoxin Zhang ◽  
Zhixin Shen ◽  
Yuanyuan Zhang ◽  
...  

AbstractIncreasing lines of evidence indicate the role of long non-coding RNAs (LncRNAs) in gene regulation and tumor development. Hence, it is important to elucidate the mechanisms of LncRNAs underlying the proliferation, metastasis, and invasion of lung adenocarcinoma (LUAD). We employed microarrays to screen LncRNAs in LUAD tissues with and without lymph node metastasis and revealed their effects on LUAD. Among them, Linc00426 was selected for further exploration in its expression, the biological significance, and the underlying molecular mechanisms. Linc00426 exhibits ectopic expression in LUAD tissues and cells. The ectopic expression has been clinically linked to tumor size, lymphatic metastasis, and tumor differentiation of patients with LUAD. The deregulation of Linc00426 contributes to a notable impairment in proliferation, invasion, metastasis, and epithelial–mesenchymal transition (EMT) in vitro and in vivo. Mechanistically, the deregulation of Linc00426 could reduce cytoskeleton rearrangement and matrix metalloproteinase expression. Meanwhile, decreasing the level of Linc00426 or increasing miR-455-5p could down-regulate the level of UBE2V1. Thus, Linc00426 may act as a competing endogenous RNA (ceRNA) to abate miR-455-5p-dependent UBE2V1 reduction. We conclude that Linc00426 accelerates LUAD progression by acting as a molecular sponge to regulate miR-455-5p, and may be a potential novel tumor marker for LUAD.


2018 ◽  
Vol 51 (6) ◽  
pp. 2872-2886 ◽  
Author(s):  
Yuxin Dai ◽  
Yongkun Wan ◽  
Mingke Qiu ◽  
Shuqing Wang ◽  
Chang Pan ◽  
...  

Background/Aims: Dysregulation of long noncoding RNAs (lncRNAs) is associated with the proliferation and metastasis in a variety of cancers, of which lncRNA maternally expressed gene 3 (MEG3) has been indicated as a tumor suppressor in multiple malignancies. However, the underlying mechanisms by which MEG3 contributes to human hemangiomas (HAs) remain undetermined. Methods: qRT-PCR analysis was performed to examine the expression levels of MEG3 and VEGF in proliferating or involuting phase HAs. MTT, colony formation assay, flow cytometry analysis and a subcutaneous xenograft tumor model were conducted to assess the effects of MEG3 on the HAs tumorigenesis. The interaction between MEG3 and miRNAs or their downstream pathways was evidenced by bioinformatic analysis, luciferase report assays, RNA immunoprecipitation (RIP) assay. and Western blot analysis. Results: The expression of MEG3 was substantially decreased and had a negative correlation with VEGF expression in proliferating phase HAs, as compared with the involuting phase HAs and normal skin tissues. Ectopic expression of MEG3 suppressed cell proliferation, colony formation and induced cycle arrest in vitro and in vivo, followed by the downregulation of VEGF and cyclinD1, but knockdown of MEG3 reversed these effects. Furthermore, MEG3 was verified to act as a sponge of miR-494 in HAs cells, and miR-494 counteracted MEG3-caused anti-proliferative effects by regulating PTEN/PI3K/AKT pathway, and exhibited the negative correlation with MEG3 and PTEN expression in proliferating phase HAs. Conclusion: Our findings suggested that lncRNA MEG3 inhibited HAs tumorigenesis by sponging miR-494 and regulating PTEN/PI3K/AKT pathway.


Oncogenesis ◽  
2019 ◽  
Vol 8 (11) ◽  
Author(s):  
Wenjie Xia ◽  
Qixing Mao ◽  
Bing Chen ◽  
Lin Wang ◽  
Weidong Ma ◽  
...  

Abstract The proposed competing endogenous RNA (ceRNA) mechanism suggested that diverse RNA species, including protein-coding messenger RNAs and non-coding RNAs such as long non-coding RNAs, pseudogenes and circular RNAs could communicate with each other by competing for binding to shared microRNAs. The ceRNA network (ceRNET) is involved in tumor progression and has become a hot research topic in recent years. To date, more attention has been paid to the role of non-coding RNAs in ceRNA crosstalk. However, coding transcripts are more abundant and powerful than non-coding RNAs and make up the majority of miRNA targets. In this study, we constructed a mRNA-mRNA related ceRNET of lung adenocarcinoma (LUAD) and identified the highlighted TWIST1-centered ceRNET, which recruits SLC12A5 and ZFHX4 as its ceRNAs. We found that TWIST1/SLC12A5/ZFHX4 are all upregulated in LUAD and are associated with poorer prognosis. SLC12A5 and ZFHX4 facilitated proliferation, migration, and invasion in vivo and in vitro, and their effects were reversed by miR-194–3p and miR-514a-3p, respectively. We further verified that SLC12A5 and ZFHX4 affected the function of TWIST1 by acting as ceRNAs. In summary, we constructed a mRNA-mRNA related ceRNET for LUAD and highlighted the well-known oncogene TWIST1. Then we verified that SLC12A5 and ZFHX4 exert their oncogenic function by regulating TWIST1 expression through a ceRNA mechanism.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3657
Author(s):  
Subhasree Kumar ◽  
Edward A. Gonzalez ◽  
Pranela Rameshwar ◽  
Jean-Pierre Etchegaray

Non-coding RNAs (ncRNAs) are untranslated RNA molecules that regulate gene expressions. NcRNAs include small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), circular RNAs (cRNAs) and piwi-interacting RNAs (piRNAs). This review focuses on two types of ncRNAs: microRNAs (miRNAs) or short interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs). We highlight the mechanisms by which miRNAs and lncRNAs impact the epigenome in the context of cancer. Both miRNAs and lncRNAs have the ability to interact with numerous epigenetic modifiers and transcription factors to influence gene expression. The aberrant expression of these ncRNAs is associated with the development and progression of tumors. The primary reason for their deregulated expression can be attributed to epigenetic alterations. Epigenetic alterations can cause the misregulation of ncRNAs. The experimental evidence indicated that most abnormally expressed ncRNAs impact cellular proliferation and apoptotic pathways, and such changes are cancer-dependent. In vitro and in vivo experiments show that, depending on the cancer type, either the upregulation or downregulation of ncRNAs can prevent the proliferation and progression of cancer. Therefore, a better understanding on how ncRNAs impact tumorigenesis could serve to develop new therapeutic treatments. Here, we review the involvement of ncRNAs in cancer epigenetics and highlight their use in clinical therapy.


2021 ◽  
Author(s):  
Liya Liu ◽  
Youqin Chen ◽  
Xiaoying Lin ◽  
Meizhu Wu ◽  
Jiapeng Li ◽  
...  

Abstract Background: Colorectal cancer (CRC) is one of the most highly malignant tumors and has a complicated pathogenesis. A preliminary study identified syntrophin beta 1 (SNTB1) as a potential oncogene in CRC. However, the clinical significance, biological function, and underlying mechanisms of SNTB1 in CRC are unknown. Thus, the present study aimed to investigate the function of SNTB1 in CRC.Methods: The expression profile of SNTB1 in CRC samples was evaluated by database analysis, cDNA array, tissue microarray, Quantitative real-time PCR (qPCR), and immunohistochemistry. SNTB1 expression in human CRC cells was silenced using short hairpin RNAs and its mRNA and protein levels were assessed by qPCR and western blotting, respectively. Cell proliferation, colony formation, cell cycle and apoptosis were determined by the cell counting, colony formation, and flow cytometry assays, respectively. A xenograft nude mouse model of CRC was established for validating the roles of SNTB1 in vivo. Immunohistochemistry was used to score the expression of SNTB1 in tissue samples. The isobaric tags for relative and absolute quantification (iTRAQ) was used to analyze the differentially expressed proteins after knockdown of SNTB1 in CRC cells.Results: SNTB1 expression was increased in CRC tissue compared with adjacent noncancerous tissues and the increased expression was associated with shorter overall survival of CRC patients. Silencing of SNTB1 suppressed cell viability and survival, induced cell cycle arrest and apoptosis in vitro, and inhibited the growth of CRC cells in vivo. Further elucidation of the regulation of STNB on CRC growth by iTRAQ analysis identified 210 up-regulated and 55 down-regulated proteins in CRC cells after SNTB knockdown. A PPI network analysis identified protein kinase N2 (PKN2) as a hub protein and was up-regulated in CRC cells after SNTB1 knockdown. Western-blot analysis further confirmed that SNTB1 knockdown significantly up-regulated PKN2 protein expression in CRC cells and decreased the phosphorylation of both ERK1/2 and AKT. Conclusion: These findings indicate that SNTB1 is overexpressed in CRC. Elevated SNTB1 levels are correlated with shorter patient survival. Importantly, SNTB1 promoted tumor growth and progression of CRC, possibly by reducing the expression of PKN2 and activating the ERK and AKT signaling pathway. Our study highlights the potential of SNTB1 as a new prognostic predictor and therapeutic target for CRC.


Sign in / Sign up

Export Citation Format

Share Document