scholarly journals The critical role and potential target of the autotaxin/lysophosphatidate axis in pancreatic cancer

Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769454 ◽  
Author(s):  
Ming Quan ◽  
Jiu-jie Cui ◽  
Xiao Feng ◽  
Qian Huang

Autotaxin, an ecto-lysophospholipase D encoded by the human ENNP2 gene, is expressed in multiple tissues, and participates in numerous critical physiologic and pathologic processes including inflammation, pain, obesity, embryo development, and cancer via the generation of the bioactive lipid lysophosphatidate. Overwhelming evidences indicate that the autotaxin/lysophosphatidate signaling axis serves key roles in the numerous processes central to tumorigenesis and progression, including proliferation, survival, migration, invasion, metastasis, cancer stem cell, tumor microenvironment, and treatment resistance by interacting with a series of at least six G-protein-coupled receptors (LPAR1–6). This review provides an overview of the autotaxin/lysophosphatidate axis and collates current knowledge regarding its specific role in pancreatic cancer. With a deeper understanding of the critical role of the autotaxin/lysophosphatidate axis in pancreatic cancer, targeting autotaxin or lysophosphatidate receptor may be a potential and promising strategy for cancer therapy.

2019 ◽  
Vol 119 (04) ◽  
pp. 534-541 ◽  
Author(s):  
Selin Gencer ◽  
Emiel van der Vorst ◽  
Maria Aslani ◽  
Christian Weber ◽  
Yvonne Döring ◽  
...  

AbstractInflammation has been well recognized as one of the main drivers of atherosclerosis development and therefore cardiovascular diseases (CVDs). It has been shown that several chemokines, small 8 to 12 kDa cytokines with chemotactic properties, play a crucial role in the pathophysiology of atherosclerosis. Chemokines classically mediate their effects by binding to G-protein-coupled receptors called chemokine receptors. In addition, chemokines can also bind to atypical chemokine receptors (ACKRs). ACKRs fail to induce G-protein-dependent signalling pathways and thus subsequent cellular response, but instead are able to internalize, scavenge or transport chemokines. In this review, we will give an overview of the current knowledge about the involvement of ACKR1–4 in CVDs and especially in atherosclerosis development. In the recent years, several studies have highlighted the importance of ACKRs in CVDs, although there are still several controversies and unexplored aspects that have to be further elucidated. A better understanding of the precise role of these atypical receptors may pave the way towards novel and improved therapeutic strategies.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1228
Author(s):  
Tomasz Boczek ◽  
Joanna Mackiewicz ◽  
Marta Sobolczyk ◽  
Julia Wawrzyniak ◽  
Malwina Lisek ◽  
...  

Schizophrenia is a common debilitating disease characterized by continuous or relapsing episodes of psychosis. Although the molecular mechanisms underlying this psychiatric illness remain incompletely understood, a growing body of clinical, pharmacological, and genetic evidence suggests that G protein-coupled receptors (GPCRs) play a critical role in disease development, progression, and treatment. This pivotal role is further highlighted by the fact that GPCRs are the most common targets for antipsychotic drugs. The GPCRs activation evokes slow synaptic transmission through several downstream pathways, many of them engaging intracellular Ca2+ mobilization. Dysfunctions of the neurotransmitter systems involving the action of GPCRs in the frontal and limbic-related regions are likely to underly the complex picture that includes the whole spectrum of positive and negative schizophrenia symptoms. Therefore, the progress in our understanding of GPCRs function in the control of brain cognitive functions is expected to open new avenues for selective drug development. In this paper, we review and synthesize the recent data regarding the contribution of neurotransmitter-GPCRs signaling to schizophrenia symptomology.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Sajad Chamani ◽  
Vanessa Bianconi ◽  
Aida Tasbandi ◽  
Matteo Pirro ◽  
George E. Barreto ◽  
...  

Acute inflammation has been described as a reactive dynamic process, promoted by the secretion of proinflammatory mediators, including lipid molecules like leukotrienes and prostaglandins, and counterbalanced by proresolving mediators including omega-3 polyunsaturated fatty-acid- (PUFA-) derived molecules. The switch from the initiation to the resolution phase of acute inflammatory response is crucial for tissue homeostasis, whereas the failure to resolve early inflammation by specialized proresolving mediators leads to chronic inflammation and tissue damage. Among PUFA-derived proresolving mediators, different eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derivatives have been described, namely, resolvins (resolution phase interaction products), which exert their anti-inflammatory and immune-regulatory activities through specific G-protein-coupled receptors. In recent years, compelling evidence has shown that impairment of resolution of inflammation is a crucial pathogenic hallmark in different neurodegenerative disorders, including Alzheimer’s disease and Parkinson’s disease. This review summarizes current knowledge on the role of resolvins in resolution of inflammation and highlights available evidence showing the neuroprotective potential of EPA- and DHA-derived resolvins (E-series and D-series resolvins, respectively) in neurodegenerative diseases.


2018 ◽  
Vol 207 ◽  
pp. 27-37 ◽  
Author(s):  
Elena Lesca ◽  
Valérie Panneels ◽  
Gebhard F. X. Schertler

Water molecules play a critical role during activation of GPCRs, one of the most important class of signalling proteins.


Author(s):  
Mohamad Hossein Pourhanifeh ◽  
Kazem Abbaszadeh-Goudarzi ◽  
Mohammad Goodarzi ◽  
Sara G.M. Piccirillo ◽  
Alimohammad Shafiee ◽  
...  

: Melanoma is the most life-threatening and aggressive class of skin malignancies. The incidence of melanoma has steadily increased. Metastatic melanoma is greatly resistant to standard anti-melanomatreatments such as chemotherapy, and 5-year survival rate of cases with melanoma who have metastatic form of disease is less than 10%. The contributing role of apoptosis, angiogenesis and autophagy in the pathophysiology of melanoma has been previously demonstrated. Thus, it is extremely urgent to search for complementary therapeutic approachesthat couldenhance the quality of life of subjects and reduce treatment resistance and adverse effects. Resveratrol, known as a polyphenol component present in grapes and some plants, has anti-cancer properties due to its function as an apoptosis inducer in tumor cells, and anti-angiogenic agent to prevent metastasis. However, more clinical trials should be conducted to prove resveratrol efficacy. : Herein, for first time, we summarize current knowledge of anti-cancerous activities of resveratrol in melanoma.


2019 ◽  
Vol 24 (39) ◽  
pp. 4605-4610 ◽  
Author(s):  
Atena Soleimani ◽  
Farzad Rahmani ◽  
Gordon A. Ferns ◽  
Mikhail Ryzhikov ◽  
Amir Avan ◽  
...  

Colorectal cancer (CRC) is the leading cause of cancer death worldwide and its incidence is increasing. In most patients with CRC, the PI3K/AKT signaling axis is over-activated. Regulatory oncogenic or tumor suppressor microRNAs (miRNAs) for PI3K/AKT signaling regulate cell proliferation, migration, invasion, angiogenesis, as well as resistance to chemo-/radio-therapy in colorectal cancer tumor tissues. Thus, regulatory miRNAs of PI3K/AKT/mTOR signaling represent novel biomarkers for new patient diagnosis and obtaining clinically invaluable information from post-treatment CRC patients for improving therapeutic strategies. This review summarizes the current knowledge of miRNAs’ regulatory roles of PI3K/AKT signaling in CRC pathogenesis.


2019 ◽  
Vol 20 (9) ◽  
pp. 2066 ◽  
Author(s):  
Namrata Khurana ◽  
Suresh C. Sikka

Androgen receptor (AR) signaling plays a key role not only in the initiation of prostate cancer (PCa) but also in its transition to aggressive and invasive castration-resistant prostate cancer (CRPC). However, the crosstalk of AR with other signaling pathways contributes significantly to the emergence and growth of CRPC. Wnt/β-catenin signaling facilitates ductal morphogenesis in fetal prostate and its anomalous expression has been linked with PCa. β-catenin has also been reported to form complex with AR and thus augment AR signaling in PCa. The transcription factor SOX9 has been shown to be the driving force of aggressive and invasive PCa cells and regulate AR expression in PCa cells. Furthermore, SOX9 has also been shown to propel PCa by the reactivation of Wnt/β-catenin signaling. In this review, we discuss the critical role of SOX9/AR/Wnt/β-catenin signaling axis in the development and progression of CRPC. The phytochemicals like sulforaphane and curcumin that can concurrently target SOX9, AR and Wnt/β-catenin signaling pathways in PCa may thus be beneficial in the chemoprevention of PCa.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Maria Cecilia Oliveira-Nunes ◽  
Glaucia Julião ◽  
Aline Menezes ◽  
Fernanda Mariath ◽  
John A. Hanover ◽  
...  

AbstractGlioblastoma (GBM) is a grade IV glioma highly aggressive and refractory to the therapeutic approaches currently in use. O-GlcNAcylation plays a key role for tumor aggressiveness and progression in different types of cancer; however, experimental evidence of its involvement in GBM are still lacking. Here, we show that O-GlcNAcylation plays a critical role in maintaining the composition of the GBM secretome, whereas inhibition of OGA activity disrupts the intercellular signaling via microvesicles. Using a label-free quantitative proteomics methodology, we identified 51 proteins in the GBM secretome whose abundance was significantly altered by activity inhibition of O-GlcNAcase (iOGA). Among these proteins, we observed that proteins related to proteasome activity and to regulation of immune response in the tumor microenvironment were consistently downregulated in GBM cells upon iOGA. While the proteins IGFBP3, IL-6 and HSPA5 were downregulated in GBM iOGA cells, the protein SQSTM1/p62 was exclusively found in GBM cells under iOGA. These findings were in line with literature evidence on the role of p62/IL-6 signaling axis in suppressing tumor aggressiveness and our experimental evidence showing a decrease in radioresistance potential of these cells. Taken together, our findings provide evidence that OGA activity may regulate the p62 and IL-6 abundance in the GBM secretome. We propose that the assessment of tumor status from the main proteins present in its secretome may contribute to the advancement of diagnostic, prognostic and even therapeutic tools to approach this relevant malignancy.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Isabell Kaczmarek ◽  
Tomáš Suchý ◽  
Simone Prömel ◽  
Torsten Schöneberg ◽  
Ines Liebscher ◽  
...  

Abstract G protein-coupled receptors (GPCRs) modulate a variety of physiological functions and have been proven to be outstanding drug targets. However, approximately one-third of all non-olfactory GPCRs are still orphans in respect to their signal transduction and physiological functions. Receptors of the class of Adhesion GPCRs (aGPCRs) are among these orphan receptors. They are characterized by unique features in their structure and tissue-specific expression, which yields them interesting candidates for deorphanization and testing as potential therapeutic targets. Capable of G-protein coupling and non-G protein-mediated function, aGPCRs may extend our repertoire of influencing physiological function. Besides their described significance in the immune and central nervous systems, growing evidence indicates a high importance of these receptors in metabolic tissue. RNAseq analyses revealed high expression of several aGPCRs in pancreatic islets, adipose tissue, liver, and intestine but also in neurons governing food intake. In this review, we focus on aGPCRs and their function in regulating metabolic pathways. Based on current knowledge, this receptor class represents high potential for future pharmacological approaches addressing obesity and other metabolic diseases.


2021 ◽  
Vol 22 (12) ◽  
pp. 6613
Author(s):  
Fernando C. Baltanás ◽  
Rósula García-Navas ◽  
Eugenio Santos

The SOS family of Ras-GEFs encompasses two highly homologous and widely expressed members, SOS1 and SOS2. Despite their similar structures and expression patterns, early studies of constitutive KO mice showing that SOS1-KO mutants were embryonic lethal while SOS2-KO mice were viable led to initially viewing SOS1 as the main Ras-GEF linking external stimuli to downstream RAS signaling, while obviating the functional significance of SOS2. Subsequently, different genetic and/or pharmacological ablation tools defined more precisely the functional specificity/redundancy of the SOS1/2 GEFs. Interestingly, the defective phenotypes observed in concomitantly ablated SOS1/2-DKO contexts are frequently much stronger than in single SOS1-KO scenarios and undetectable in single SOS2-KO cells, demonstrating functional redundancy between them and suggesting an ancillary role of SOS2 in the absence of SOS1. Preferential SOS1 role was also demonstrated in different RASopathies and tumors. Conversely, specific SOS2 functions, including a critical role in regulation of the RAS–PI3K/AKT signaling axis in keratinocytes and KRAS-driven tumor lines or in control of epidermal stem cell homeostasis, were also reported. Specific SOS2 mutations were also identified in some RASopathies and cancer forms. The relevance/specificity of the newly uncovered functional roles suggests that SOS2 should join SOS1 for consideration as a relevant biomarker/therapy target.


Sign in / Sign up

Export Citation Format

Share Document