scholarly journals Performance of single piezoelectric vibrator micropump with check valve

2019 ◽  
Vol 31 (1) ◽  
pp. 117-126 ◽  
Author(s):  
Jingshi Dong ◽  
Yi Cao ◽  
Quanqu Chen ◽  
Yue Wu ◽  
Rui Gang Liu ◽  
...  

A new single vibrator piezoelectric micropump which integrated the check valve and the piezoelectric oscillator is designed in this research. The micropump mainly consists of a circular piezoelectric vibrator, a polyethylene terephthalate check valve, two rubber sealing rings, upper pump cover, and lower pump cover. In this research, in order to study output performance of the single vibrator piezoelectric pump, theoretical analysis and experimental verification of the piezoelectric pump check valve have been carried out by exploiting the method of check valves and vibrator mass separation. Experimental results show that the opening of the check valve is mainly caused by the pressure difference and the inertia force. The dominant factor of check valve opening is different under different drive frequencies. A maximum opening displacement of 19.625 μm of the check valve is obtained when the micropump is driven by a sinusoidal voltage of 60 V at 300 Hz. In addition, the maximum flow rate of 2034.7 mL min−1 is obtained when the micropump is driven by a sinusoidal voltage of 60 V at 320 Hz, and a maximum output pressure of 0.82 kPa is obtained when the micropump is driven by a sinusoidal voltage of 60 V at 140 Hz.

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5867
Author(s):  
Xiaolong Zhao ◽  
Dingxuan Zhao ◽  
Qinghe Guo

The paper is a continuation of our work on the dynamic load in piezoelectric pumps. In the study, the dynamic load of liquid in the pipelines was proposed as a key factor that limits the output performance of piezoelectric pumps. To decrease the dynamic load, a piezoelectric pump with two elastic chambers was proposed in our previous published work. In this paper, the performance and key parameters of the piezoelectric pump with two elastic chambers were studied through theoretical analyses and experimental tests. After establishing the mathematical model of the piezoelectric pump with two elastic chambers, the paper theoretically analyzed the performance of the pump and the effect of different structural parameters on the performance. Then prototypes with a range of structural parameters were developed and tested. As revealed from the test results, the elastic chamber effectively decreased the dynamic load of the liquid in the pipelines and the flow rate of the prototype with two elastic chambers was higher than that of the prototype with one or no elastic chamber. However, the elastic chamber did not lead to the increase in the maximum output backpressure of the prototype. Adopting an elastic diaphragm exhibiting a smaller stiffness or a larger diameter could help decrease the dynamic load of the liquid. The elastic chamber more significantly impacted the flow rate of the piezoelectric pump with long pipelines. The pump chamber height had a significant effect on the output performance of the piezoelectric pump with two elastic chambers, which is consistent with the conventional piezoelectric pump. At the height of 0.2 mm, the flow rate of the prototype with two elastic chambers was peaked at 7.7 mL/min; at the height of 0.05 mm, the output backpressure reached the highest of 28.2 kPa. The dynamic load could decrease the amplitude of the piezoelectric vibrator, whereas the prototype with two elastic chambers could effectively reduce the impact of dynamic load on the piezoelectric vibrator. The flow rate decreased almost linearly with the backpressure. Under the same backpressure, the flow rate of the prototype with two elastic chambers was higher than that of the prototype without elastic chamber, and the flow rate difference between the two prototypes gradually decreased with the backpressure.


2012 ◽  
Vol 443-444 ◽  
pp. 1096-1100
Author(s):  
Yong Liu ◽  
Zhi Gang Yang ◽  
Yue Wu

: The author has found the sucking process outflow phenomenon existing in piezoelectric pump during the outflow experiment. To explain the reason of outflow in sucking process, the fluid-structure interaction model of piezoelectric vibrator, fluid and check valve is founded. The simulation analysis turns out that the pump chamber pressure increases sharply in the later of sucking process because of the flow inertia, which is the root cause of sucking process outflow. The output flow should include two part, bulk flow and inertial flow, which will provide theoretical reference to piezoelectric pump outflow control.


2020 ◽  
Author(s):  
Lipeng He ◽  
Xiaoqiang Wu ◽  
Zhe Wang ◽  
Da Zhao ◽  
Jianming Wen ◽  
...  

Abstract Piezoelectric pumps are applied in cooling systems of microelectronic devices because of their small size. However, cooling efficiency is limited by low flow rate. A Straight arm wheeled check valve made of silica gel was proposed, which can improve flow rate of piezoelectric pump, solve the influence of glue aging on the sealing ability of a wheeled check valve and reduce the size of piezoelectric pump. This paper discusses the influence of valve arm number (N=2, 3 and 4), valve arm width (W=1.0, 1.2 and 1.4mm) and valve thickness (T=0.6, 0.8 and 1.0mm) on flow rate characteristics of piezoelectric pumps. When valve opening rises, the flow rate increases. The simulation results show that valves with 2 valve arms, 0.6mm valve thickness and 1.0mm valve arm width have maximum valve opening. Experimental results show that piezoelectric pumps with different valve parameters have different optimal frequencies. In addition, maximum flow rate is 431.6mL/min at 220V and 70Hz. This paper provides a reference for the application of piezoelectric pump in cooling system.


Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 735 ◽  
Author(s):  
Xiaolong Zhao ◽  
Dingxuan Zhao ◽  
Jiantao Wang ◽  
Tao Li

As piezoelectric pumps are used in more fields, they are gradually failing to meet the application requirements due to their low output performance. Therefore, improving the output performance of piezoelectric pumps helps to expand their applications. This paper argued that the dynamic load of liquid in the inlet and outlet pipelines was an important factor that weakened the performance of piezoelectric pumps. Therefore, in order to reduce the dynamic load, it was proposed to replace the conventional piezoelectric pump inlet and outlet by an elastic inlet and outlet. After introducing the structure and working principle of elastic inlet and outlet, the mechanism of reducing the dynamic load by elastic inlet and outlet was analyzed. Then, the influence of the elastic cavity height on the performance of the piezoelectric pump was studied from both fluid simulation and theoretical analysis. Finally, several prototypes were made. The effectiveness of the elastic inlet and outlet on improving the performance of the prototype and the effect of the elastic cavity height on the performance of the prototype were tested, respectively. The test results showed that the elastic inlet and outlet effectively improved the flow rate and output backpressure without increasing the maximum output backpressure. The maximum flow rate of the pump system without load was increased by 36%. In addition, the elastic cavity height adversely affected the flow rate and output backpressure of the prototypes, but had no effect on the maximum output backpressure. In summary, the elastic inlet and outlet can effectively increase the output performance of the piezoelectric pump, but the design height should be appropriately reduced.


Author(s):  
Lipeng He ◽  
Xiaoqiang Wu ◽  
Zheng Zhang ◽  
Zhe Wang ◽  
Bangcheng Zhang ◽  
...  

Piezoelectric pumps are applied in many fields, such as chemical analysis system and fluid pumping systems. Piezoelectric pumps with high output pressure can meet the needs of more fields. This article introduces the design and fabrication of a high output pressure piezoelectric pump with straight arm wheeled check valve. In this paper, the influence of straight arm wheeled check valve on the output pressure of piezoelectric pump is deeply discussed from the aspect of energy loss. This study investigated the effect of valve arm number ( N = 2, 3,4, and 5), the valve arm width ( W = 0.8, 1.0, and 1.2 mm), and the valve arm length ( L = 1.92, 2.02, and 2.12 mm) on the output pressure of piezoelectric pump. The output pressure characteristic of straight arm wheeled check valve piezoelectric pump with different valve parameters is obtained by experiment. Experimental results show that when N = 4, W = 1.0 mm, L = 2.02 mm, the output pressure of the straight arm wheeled check valve piezoelectric pump has the best output pressure of 27.41 kPa at 220 V and 85 Hz. This study provides a reference for the further application of piezoelectric pumps in fluid pumping field.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 500
Author(s):  
Jian Chen ◽  
Wenzhi Gao ◽  
Changhai Liu ◽  
Liangguo He ◽  
Yishan Zeng

This study proposes the improvement of the output performance of a resonant piezoelectric pump by adding proof masses to the free ends of the prongs of a U-shaped piezoelectric resonator. Simulation analyses show that the out-of-phase resonant frequency of the developed resonator can be tuned more efficiently within a more compact structure to the optimal operating frequency of the check valves by adjusting the thickness of the proof masses, which ensures that both the resonator and the check valves can operate at the best condition in a piezoelectric pump. A separable prototype piezoelectric pump composed of the proposed resonator and two diaphragm pumps was designed and fabricated with outline dimensions of 30 mm × 37 mm × 54 mm. Experimental results demonstrate remarkable improvements in the output performance and working efficiency of the piezoelectric pump. With the working fluid of liquid water and under a sinusoidal driving voltage of 298.5 Vpp, the miniature pump can achieve the maximum flow rate of 2258.9 mL/min with the highest volume efficiency of 77.1% and power consumption of 2.12 W under zero backpressure at 311/312 Hz, and the highest backpressure of 157.3 kPa under zero flow rate at 383 Hz.


Author(s):  
Yi Hou ◽  
Lipeng He ◽  
Zheng Zhang ◽  
Baojun Yu ◽  
Hong Jiang ◽  
...  

This paper focuses on a new structure in the valveless piezoelectric pump, which has a combination structure of the conical flow channel and two fishtail-shaped bluffbodies in the chamber of the pump. The fishtail-shaped bluffbody is inspired by the shape of the swimming fish to diminish the backflow and optimize the performance of the pump. The performance is studied by changing the shape and size of the inlet and outlet, the bluff bodies’ height and the space between two bluff bodies. The results show that the 3 mm × 3 mm square inlet, 3 mm diameter round outlet, 3 mm height of bluffbodies, 6.8 mm pitch of bluffbodies has a best performance in all 10 prototypes, which implements a maximum flow rate of 87.5 ml/min at 170 V 40 Hz with a noise of 42.6 dB. This study makes a preliminary investigation and theoretical explanation for the subsequent optimization of this structure, improved the performance of the valveless piezoelectric pump, broaden the thinking of the design for the bluffbody for better performance of the valveless piezoelectric pump.


2019 ◽  
Vol 9 (18) ◽  
pp. 3881 ◽  
Author(s):  
Ming Tang ◽  
Qibo Bao ◽  
Jianhui Zhang ◽  
Qingshuang Ning ◽  
Chaobin Chen ◽  
...  

In this paper, a streamlined flow tube valveless piezoelectric pump (SLFT PZT pump) is proposed to modify the single flow trend and improve the fluid flow stability. Firstly, the structural and working principle of the streamlined flow tube, which accounts for changing the flow trend and improving the flow stability, were analyzed. The flow resistance and flow rate equations were established. Secondly, the pressure and velocity fields of the tube were simulated. These simulated results were consistent with the theoretical results. Thirdly, the flow resistance of the flow tube was tested with pressure differences of 1000 Pa, 1200 Pa, 1400 Pa and 1600 Pa respectively. The trend of the result curves was consistent with the simulated results. The amplitude-frequency relationship and the flow-rate-frequency relationship were also tested, both result curves highly corelate. The maximum amplitude was 0.228 mm (10 Hz, 120 V), and the maximum flow rate was 17.01 mL/min (10 Hz, 100 V). Finally, the theoretical flow rate of the SLFT PZT pump was calculated at 100 V and 120 V. These results roughly fitted with the experimental results. The streamlined flow tube could change the internal flow trend that remarkably improved the flow stability. Therefore, it promoted the application of the valveless PZT pump in living cells, biomedical and polymer delivery.


2013 ◽  
Vol 284-287 ◽  
pp. 2032-2036
Author(s):  
Chiang Ho Cheng ◽  
Yi Pin Tseng

This paper aims to present the design, fabrication and test of a novel piezoelectrically actuated, check valve embedded micropump having the advantages of miniature size, light weight and low power consumption. The micropump consists of a piezoelectric actuator, a stainless steel chamber layer with membrane, two stainless steel channel layers with two valve seats, and a nickel check valve layer with two bridge-type check valves. The check valve layer was fabricated by nickel electroforming process on a stainless steel substrate. The chamber and the channel layer were made of the stainless steel manufactured using the lithography and etching process based on MEMS fabrication technology. The effects of check valve thickness, operating frequency and back pressure on the flow rate of the micropump are investigated. The micropump with check valve 20 μm in thickness obtained higher output values under the sinusoidal waveform of 120 Vpp and 160 Hz. The maximum flow rate and backpressure are 1.82 ml/min and 32 kPa, respectively.


2001 ◽  
Author(s):  
Hyeun Joong Yoon ◽  
Woo Young Sim ◽  
Sang Sik Yang

Abstract This paper presents the fabrication and test of a phase-change type micropump with two aluminum flap valves. This micropump consists of a pair of Al flap valves and a phase-change type actuator. The actuator is composed of a heater, a silicone rubber diaphragm and a working fluid chamber. The diaphragm is actuated by the vaporization and the condensation of the working fluid. The micropump is fabricated by the anisotropic etching, the boron diffusion and the metal evaporation. The dimension of the micropump is 8.5 mm × 5 mm × 1.7 mm. The forward and the backward flow characteristics of the flap valve illustrate the appropriateness as a check valve. Also, the flow rate of the micropump is measured. When the square wave input voltage of 10 V is applied to the heater, the maximum flow rate of the micropump is 6.1 μl/min at 0.5 Hz and the duty ratio of 60% for zero pressure difference.


Sign in / Sign up

Export Citation Format

Share Document