scholarly journals On nonlinear horizontal dynamics and vibrations control for high-speed elevators

2016 ◽  
Vol 24 (5) ◽  
pp. 825-838 ◽  
Author(s):  
DR Santo ◽  
JM Balthazar ◽  
AM Tusset ◽  
V Piccirilo ◽  
RMLRF Brasil ◽  
...  

In this work, the horizontal nonlinear response of a three-degree-of-freedom vertical transportation model excited by guide rail deformations is investigated. The equation of motion contains nonlinearities in the form of Duffing stiffness for the translational spring in tilting motion of the cabin. In order to improve the comfort for passengers a control strategy based on the State-dependent Ricatti Equation (SDRE) is proposed. Numerical simulations are performed to study the nonlinear behavior of the adopted mathematical model. In addition, we test the robustness of the SDRE control technique considering parametric errors and noise. The obtained results confirm that the proposed strategy can be effective in controlling the response of the system.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Luiz C. G. de Souza ◽  
Victor M. R. Arena

An experimental attitude control algorithm design using prototypes can minimize space mission costs by reducing the number of errors transmitted to the next phase of the project. The Space Mechanics and Control Division (DMC) of INPE is constructing a 3D simulator to supply the conditions for implementing and testing satellite control hardware and software. Satellite large angle maneuver makes the plant highly nonlinear and if the parameters of the system are not well determined, the plant can also present some level of uncertainty. As a result, controller designed by a linear control technique can have its performance and robustness degraded. In this paper the standard LQR linear controller and the SDRE controller associated with an SDRE filter are applied to design a controller for a nonlinear plant. The plant is similar to the DMC 3D satellite simulator where the unstructured uncertainties of the system are represented by process and measurements noise. In the sequel the State-Dependent Riccati Equation (SDRE) method is used to design and test an attitude control algorithm based on gas jets and reaction wheel torques to perform large angle maneuver in three axes. The SDRE controller design takes into account the effects of the plant nonlinearities and system noise which represents uncertainty. The SDRE controller performance and robustness are tested during the transition phase from angular velocity reductions to normal mode of operation with stringent pointing accuracy using a switching control algorithm based on minimum system energy. This work serves to validate the numerical simulator model and to verify the functionality of the control algorithm designed by the SDRE method.


2019 ◽  
Vol 43 (4) ◽  
pp. 535-543 ◽  
Author(s):  
Shunxin Cao ◽  
Ruijun Zhang ◽  
Shuohua Zhang ◽  
Shuai Qiao ◽  
Dongsheng Cong ◽  
...  

Interaction and wear between wheel and rail become increasingly serious with the increase in elevator speed and load. Uneven roller surface, eccentricity of rollers, and the looseness of rail brackets result in serious vibration problems of high-speed and super-high-speed elevators. Therefore, the forced vibration differential equation representing elevator guide rails is established based on Bernoulli–Euler theory, and the vibration equation of the elevator guide shoes and the car is constructed using the Darren Bell principle. Then, the coupled vibration model of guide rail, guide shoes, and car can be obtained using the relationship of force and relative displacement among these components. The roller–rail parameters are introduced into the established coupled vibration model using the model equivalent method. Then, the influence of roller–rail parameters on the horizontal vibration of super-high-speed elevator cars is investigated. Roller eccentricity and the vibration acceleration of the car present a linear correlation, with the amplitude of the car vibration acceleration increasing with the eccentricity of the roller. A nonlinear relationship exists between the surface roughness of the roller and the vibration acceleration of the car. Increased continuous loosening of the guide rail results in severe vibration of the car at the loose position of the support.


2000 ◽  
Author(s):  
Songbin Wei ◽  
Imin Kao

Abstract In wiresaw manufacturing process where thin wire moving at high speed is pushed onto ingot to produce slices of wafer, the wire is constrained by two wafer walls as it slices into the ingot. In this paper, we investigate the vibration of such wire under the constraints of wafer walls. To address this problem, the model for wire vibration with impact to wafer walls is developed. The equation of motion is discretized using the Galerkin’s method. The principle of impulse and momentum is utilized to solve the impact problem. The results of analysis and simulation indicate that the response under a pointwise sinusoidal excitation is neither periodical nor symmetric with respect to the horizontal axis, due to the excitation from the impact. The wire vibration behavior is affected dramatically by the wafer wall constraints.


Author(s):  
Gregory L. Altamirano ◽  
Meng-Hsuan Tien ◽  
Kiran D'Souza

Abstract Coulomb friction has an influence on the behavior of numerous mechanical systems. Coulomb friction systems or dry friction systems are nonlinear in nature. This nonlinear behavior requires complex and time demanding analysis tools to capture the dynamics of these systems. Recently, efforts have been made to develop efficient analysis tools able to approximate the forced response of systems with dry friction. The objective of this paper is to introduce a methodology that assists in these efforts. In this method, the piecewise-linear nonlinear response is separated into individual linear responses that are coupled together through compatibility constraint equations. The new method is demonstrated on a number of systems of varying complexity. The results obtained by the new method are validated through the comparison with results obtained by time integration. The computational savings of the new method is also discussed.


Author(s):  
Marie Dabos ◽  
Isabelle Ranc-Darbord ◽  
Marc Genetier ◽  
Nicolas Lecysyn ◽  
Khanh-Hung Tran ◽  
...  

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
De-Lei Sheng ◽  
Peilong Shen

This paper considers both a top regulation bound and a bottom regulation bound imposed on the asset-liability ratio at the regulatory time T to reduce risks of abnormal high-speed growth of asset price within a short period of time (or high investment leverage), and to mitigate risks of low assets’ return (or a sharp fall). Applying the stochastic optimal control technique, a Hamilton–Jacobi–Bellman (HJB) equation is derived. Then, the effective investment strategy and the minimum variance are obtained explicitly by using the Lagrange duality method. Moreover, some numerical examples are provided to verify the effectiveness of our results.


Author(s):  
Sitae Kim ◽  
Alan B. Palazzolo

The double-sided fluid film force on the inner and outer ring surfaces of a floating ring bearing (FRB) creates strong nonlinear response characteristics such as coexistence of multiple orbits, Hopf bifurcation, Neimark-Sacker (N-S) bifurcation, and chaos in operations. An improved autonomous shooting with deflation algorithm is applied to a rigid rotor supported by FRBs for numerically analyzing its nonlinear behavior. The method enhances computation efficiency by avoiding previously found solutions in the numerical-based search. The solution manifold for phase state and period is obtained using arc-length continuation. It was determined that the FRB-rotor system has multiple response states near Hopf and N-S bifurcation points, and the bifurcation scenario depends on the ratio of floating ring length and diameter (L/D). Since multiple responses coexist under the same operating conditions, simulation of jumps between two stable limit cycles from potential disturbance such as sudden base excitation is demonstrated. In addition, this paper investigates chaotic motions in the FRB-rotor system, utilizing four different approaches, strange attractor, Lyapunov exponent, frequency spectrum, and bifurcation diagram. A numerical case study for quenching the large amplitude motion by adding unbalance force is provided and the result shows synchronization, i.e., subsynchronous frequency components are suppressed. In this research, the fluid film forces on the FRB are determined by applying the finite element method while prior work has utilized a short bearing approximation. Simulation response comparisons between the short bearing and finite bearing models are discussed.


Author(s):  
Sayyed Hossein Edjtahed ◽  
Amir Hossein Pir Zadeh ◽  
Abolfazl Halavaei Niasar

The hysteresis motor is a well-known synchronous motor that is used in special small power, high speed applications. Dynamic modeling and analysis of this motor is more complicated than permanent magnet synchronous motors (PMSMs) or induction motors (IMs) due to nonlinear behavior of rotor magnetic material. Short over-excitation is a unique phenomenon that only occurs in hysteresis motor in which the terminal voltage increase at synchronous speed for a short duration, and then continuously is decrease to initial value. Therefore, the input current is reduced, this leads to more power factor and efficiency enhancement. Till now, there isn’t any analytic dynamic model of this phenomenon. In this paper, based on a novel dynamic model of hysteresis motor, the over-excitation phenomenon is investigated and transient performance of the motor during over-excitation is simulated via Simulink.


Author(s):  
Slawomir Jan Stepien ◽  
Paulina Superczynska ◽  
Damian Dobrowolski ◽  
Jerzy Dobrowolski

Purpose The purpose of the paper is to present modeling and control of a nonlinear mechatronic system. To solve the control problem, the modified state-dependent Riccati equation (SDRE) method is applied. The control problem is designed and analyzed using the nonlinear feedback gain strategy for the infinite time horizon problem. Design/methodology/approach As a new contribution, this paper deals with state-dependent parametrization as an effective modeling of the mechatronic system and shows how to modify the classical form of the SDRE method to reduce computational effort during feedback gain computation. The numerical example compares described methods and confirms usefulness of the proposed technique. Findings The proposed control technique can ensure optimal dynamic response, reducing computational effort during control law computation. The effectiveness of the proposed control strategy is verified via numerical simulation. Originality/value The authors introduced an innovative approach to the well-known SDRE control methodology and settled their research in the newest literature coverage for this issue.


2009 ◽  
Vol 1199 ◽  
Author(s):  
Yoshiomi Hiranaga ◽  
Kenkou Tanaka ◽  
Tomoya Uda ◽  
Yuichi Kurihashi ◽  
Yasuhiro Kimoto ◽  
...  

AbstractIn this study, we have developed ferroelectric data storage test systems based on scanning nonlinear dielectric microscopy (SNDM) to conduct various experiments concerning read/write capability. Nanodomain formation on ferroelectric recording media was studied using the data storage test system. A nanodomain dot array was successfully written on a single-crystal LiTaO3 recording medium. The diameter of the written dot was as small as 7 nm. Epitaxial-thin-film LiTaO3 recording media were also developed. Nanodomain dots with the diameter of 25 nm were written on the thin-film recording medium. In addition, a non-contact probe-height control technique was adopted to solve the problem of tip abrasion using higher-order nonlinear dielectric response detection method. Finally, a hard-disk-drive (HDD)-type ferroelectric data storage test system was developed for conducting read/write tests under conditions close to those of actual operation. Capabilities of reading at the bit rate of 2 Mbps and writing at the bit rate of 20 Mbps were confirmed using the HDD-type data storage test system.


Sign in / Sign up

Export Citation Format

Share Document