A multi-sensor fusion framework for detecting small amplitude hunting of high-speed trains

2018 ◽  
Vol 24 (17) ◽  
pp. 3797-3808 ◽  
Author(s):  
Jing Ning ◽  
Qi Liu ◽  
Huajiang Ouyang ◽  
Chunjun Chen ◽  
Bing Zhang

Hunting monitoring is very important for high-speed trains to achieve safe operation. But all the monitoring systems are designed to detect hunting only after hunting has developed sufficiently. Under these circumstances, some damage may be caused to the railway track and train wheels. The work reported in this paper aims to solve the detection problem of small amplitude hunting before the lateral instability of high-speed trains occurs. But the information from a single sensor can only reflect the local operation state of a train. So, to improve the accuracy and robustness of the monitoring system, a multi-sensor fusion framework for detecting small amplitude hunting of high-speed trains based on an improved Dempster–Shafer (DS) theory is proposed. The framework consists of a series of steps. Firstly, the method of combining empirical mode decomposition and sample entropy is used to extract features of each operation condition. Secondly, the posterior probability support vector machine is used to get the basic probability assignment. Finally, the DS theory improved by the authors is proposed to get a more accurate detection result. This framework developed by the authors is used on high-speed trains with success and experimental findings are provided. This multi-sensor fusion framework can also be used in other condition monitoring systems on high-speed trains, such as the gearbox monitoring system, from which nonstationary signals are acquired too.

2008 ◽  
Vol 316 (1-5) ◽  
pp. 211-233 ◽  
Author(s):  
A. Al Shaer ◽  
D. Duhamel ◽  
K. Sab ◽  
G. Foret ◽  
L. Schmitt

2015 ◽  
Vol 764-765 ◽  
pp. 644-648
Author(s):  
Yit Jin Chen ◽  
Chi Jim Chen

This paper presents an automatic prediction model for ground vibration induced by Taiwan high-speed trains on embankment structures. The prediction model is developed using different field-measured ground vibration data. The main characteristics that affect the overall vibration level are established based on the database of measurement results. The influence factors include train speed, ground condition, measurement distance, and supported structure. Support vector machine (SVM) algorithm, a widely used prediction model, is adopted to predict the vibration level induced by high-speed trains on embankments. The measured and predicted vibration levels are compared to verify the reliability of the prediction model. Analysis results show that the developed SVM model can reasonably predict vibration level with an accuracy rate of 72% to 84% for four types of vibration level, including overall, low, middle, and high frequency ranges. The methodology in developing the automatic prediction system for ground vibration level is also presented in this paper.


2019 ◽  
Vol 19 (09) ◽  
pp. 1950111 ◽  
Author(s):  
Hongye Gou ◽  
Longcheng Yang ◽  
Zhixiang Mo ◽  
Wei Guo ◽  
Xiaoyu Shi ◽  
...  

Operation safety of high-speed trains is dependent on their vibration characteristics, which vary with bridge deformation. This paper studies the influence of bridge pier settlement and girder creep camber, which are two typical types of long-term bridge deformation, on the vibration of high-speed trains. To this end, an analytical approach is presented to link the bridge deformation with railway track deformation; the track deformation is used to analyze the vibration of the CRH2 high-speed train in China. The vibration analysis results are validated using the in-situ measurement data. The present study shows that bridge pier settlement greatly affects the vertical acceleration, derailment coefficient and wheel unloading rate of the high-speed train; incorporating bridge girder camber aggravates the vibration of the train–bridge system. The threshold of bridge pier settlement is suggested to be 11.1[Formula: see text]mm for trains moving at 350[Formula: see text]km/h with regard to the code-specified vibration limit. This study has significant implications for the design and operation of high-speed railways.


2020 ◽  
Vol 12 (23) ◽  
pp. 9876
Author(s):  
Krzysztof Nering ◽  
Alicja Kowalska-Koczwara ◽  
Krzysztof Stypuła

This paper presents the issues of assessing the comfort of people staying indoors who are exposed to vibrations and material noise caused by vibrations of partitions like floors and walls (ground-borne noise). Current criteria in the evaluation of vibrational and acoustic comfort cannot be assessed in the context of the simultaneous occurrence of stimuli such as noise and vibration. Railway transport, including passenger and cargo transport, is becoming increasingly prevalent, and new railway lines are being planned for environmental reasons. Sometimes, there are changes in stimuli produced by existing railway lines. For example, high-speed trains appear on an old railway track. Such a situation appeared on the Central Railway Line in Poland, which is still used by old trains, yet its operator plans to raise their speed limits. The analysis of the problem of the simultaneous occurrence of stimuli presented in this paper was based on measurements performed in a residential building located near the Central Railway Main Line in the city Zawiercie. Noise and vibration as the analyzed stimuli in both cases meet comfort requirements, yet when exposure to two stimuli was considered, comfort may be at risk.


2022 ◽  
Vol 14 (2) ◽  
pp. 294
Author(s):  
Shuo Li ◽  
Jieqiong Ding ◽  
Weirong Liu ◽  
Heng Li ◽  
Feng Zhou ◽  
...  

The track settlement has a great influence on the safe operation of high-speed trains. The existing track settlement measurement approach requires sophisticated or expensive equipments, and the real-time performance is limited. To address the issue, an ultra-high resolution track settlement detection method is proposed by using millimeter wave radar based on frequency modulated continuous wave (FMCW). Firstly, by constructing the RCS statistical feature data set of multiple objects in the track settlement measurement environment, a directed acyclic graph-support vector machine (DAG-SVM) based method is designed to solve the problem of track recognition in multi-object scenes. Then, the adaptive chirp-z-transform (ACZT) algorithm is used to estimate the distance between the radar and the track surface, which realizes automatic real-time track settlement detection. An experimental platform has been constructed to verify the effectiveness of the proposed method. The experimental results show that the accuracy of track classification and identification is at least 95%, and the accuracy of track settlement measurement exceeds 0.5 mm, which completely meets the accuracy requirements of the railway system.


2018 ◽  
Vol 239 ◽  
pp. 05004
Author(s):  
Daria Provornaya ◽  
Sergey Glushkov

One of the problems in high-speed railways is the influence and vibrations of bridges caused by moving trains. This problem significantly differs from the problems of road bridges for the following reasons. Firstly, the loads caused by the moving train on the bridge are repeated in nature, as a consecutively rotating loads (wheel), implying that certain frequencies will be caused on the bridge during the passage of the train. In contrast, the loads implied on the road are random in nature, expressed through wheel loads and the distance between the wheels. Secondly, high-speed trains can move at a speed much higher than vehicles moving along the road, which makes it possible for the excitation frequency to coincide with the oscillation frequencies of the bridge, which leads to the so-called resonance effect. Whenever the resonance condition is reached, the reaction of the bridge will be constantly amplified, since there are heavy moving loads passing through the bridge. This effect could hardly be observed on road bridges. Thirdly, the mass ratio of vehicles on the bridge is usually larger due to the fact that the train consists of several coupled cars and the railway track is relatively narrow, it has no more than two tracks in most cases. In contrast, a road bridge may be so large that it can afford four or more lanes for vehicles moving in the opposite direction. For this reason, the interaction between moving vehicles causes a greater reaction for the road bridge than for the railways.


2021 ◽  
Vol 11 (13) ◽  
pp. 6239
Author(s):  
Gaoran Guo ◽  
Junfang Wang ◽  
Bowen Du ◽  
Yanliang Du

China Railway Track System (CRTS)-II-slab ballastless track is a new type of track structure, and its interlayer connection state is considerably important for the operation safety and ride comfort of high-speed trains. However, the location and multiple influencing factors of interlayer debonding lead to difficulties in monitoring and identification. Here, the research on the design and application of a monitoring scheme that facilitates interlayer debonding detection of ballastless track and an effective indicator for debonding identification and assessment is proposed. The results show that on-site monitoring can effectively capture the vibration signals caused by train vibration and interlayer debonding. The features of the data acquired in the situations with and without interlayer debonding are compared after instantaneous baseline validation. Some significant features capable of obviously differentiating a debonding state from the normal state are identified. Furthermore, a new indicator, combining multiple debonding-sensitive features by similarity-based weights normalizing the initial difference between mutual instantaneous baselines, is developed to support rational and comprehensive assessment quantitatively. The contribution of this study includes the development and application of an interlay-debonding monitoring scheme, the establishment of an effective-feature pool, and the proposal of the similarity-based indicator, thereby laying a good foundation for debonding identification of ballastless track.


2021 ◽  
pp. 136943322110073
Author(s):  
Dongliang Meng ◽  
Shizai Chen ◽  
Menggang Yang ◽  
Shangtao Hu

China railway track system II (CRTS-II) slab ballastless track is usually constructed on high-speed railway (HSR) bridges to ensure the rail smoothness and the running safety of high-speed trains, but the use of the longitudinal continuous track system would significantly alter the dynamic characteristics of the bridges and therefore influence the bridge seismic responses. The pounding at shear keys has also been identified as one of the critical factors affecting the seismic behavior of bridges. To investigate the effects of shear keys and CRTS-II track system on the seismic behavior of HSR simply-supported bridges subjected to transverse earthquake excitations, detailed 3D finite element models are developed by using ABAQUS. The seismic responses calculated from the bridges with and without considering shear keys are firstly compared. The result shows that the shear keys can effectively limit the development of pier-girder relative displacement and thus decrease the potential of girder dislocation. However, large pounding forces would be generated between the shear keys and bearing pads and transferred to bridge piers, which will amplify the seismic responses of the bridge piers. The result of seismic analyses of multiple-span simply-supported bridges with and without considering the track system shows that the track system will significantly influence the distribution of seismic forces among the bridge spans. For a bridge with equal pier heights, considering the track system will reduce the seismic responses of side spans (close to subgrade) but will increase those of the middle spans. Whereas an opposite trend is found for bridges with high middle piers and short side piers.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3457 ◽  
Author(s):  
Jing Ning ◽  
Mingkuan Fang ◽  
Wei Ran ◽  
Chunjun Chen ◽  
Yanping Li

Joint Approximate Diagonalization of Eigen-matrices (JADE) cannot deal with non-stationary data. Therefore, in this paper, a method called Non-stationary Kernel JADE (NKJADE) is proposed, which can extract non-stationary features and fuse multi-sensor features precisely and rapidly. In this method, the non-stationarity of the data is considered and the data from multi-sensor are used to fuse the features efficiently. The method is compared with EEMD-SVD-LTSA and EEMD-JADE using the bearing fault data of CWRU, and the validity of the method is verified. Considering that the vibration signals of high-speed trains are typically non-stationary, it is necessary to utilize a rapid feature fusion method to identify the evolutionary trends of hunting motions quickly before the phenomenon is fully manifested. In this paper, the proposed method is applied to identify the evolutionary trend of hunting motions quickly and accurately. Results verify that the accuracy of this method is much higher than that of the EEMD-JADE and EEMD-SVD-LTSA methods. This method can also be used to fuse multi-sensor features of non-stationary data rapidly.


Sign in / Sign up

Export Citation Format

Share Document