Lipid Peroxidation Inhibitory Effects of Hizikia Fusiformis Methanolic Extract on Fish Oil and Linoleic Acid

2004 ◽  
Vol 10 (2) ◽  
pp. 65-72 ◽  
Author(s):  
Nalin Siriwardhana ◽  
K. -W. Lee ◽  
S. -H. Kim ◽  
J. -H. Ha ◽  
G. -T. Park ◽  
...  

The lipid peroxidation inhibitory effects of Hizikia fusiformis methanolic extract (HME) on fish oil and linoleic acid were studied by means of peroxide value (PV), thiobarbituric acid-reactive substances (TBARS), conjugated diene hydroperoxides (CDH) and weight gaining assays. Heat and UV light stability were determined by DPPH assay. HME significantly (p<0.05) reduced the lipid peroxidation in a dosedependent manner. Increasing the level of HME from 0.01 to 0.1% caused a higher antioxidative effect than the one produced by butylated hydroxytoluene (BHT) (BHT reported the best effect compared to -tocopherol and butylated hydroxyanisole). HME reduced the formation of primary oxidation products as showed by the lower CDH values compared to its control counterpart. HME reduced also the addition of oxygen to form lipid peroxyl radicals that indicated a low weight gaining in HME-treated oils. Moreover, it could reduce the formation of lipid peroxide. Furthermore, it diminished the total lipid peroxidation resulting in low TBARS values. The heat and UV light study showed that H. fusiformis contained heat- and UV-light resistant antioxidants. These results indicated that the H. fusiformis antioxidants could be useful in preventing oxidative damages of food oils.

Author(s):  
Olubukola H. Oyeniran ◽  
Adedayo O. Ademiluyi ◽  
Ganiyu Oboh

AbstractObjectivesRauvolfia vomitoria is a medicinal plant used traditionally in Africa in the management of several human diseases including psychosis. However, there is inadequate scientific information on the potency of the phenolic constituents of R. vomitoria leaf in the management of neurodegeneration. Therefore, this study characterized the phenolic constituents and investigated the effects of aqueous and methanolic extracts of R. vomitoria leaf on free radicals, Fe2+-induced lipid peroxidation, and critical enzymes linked to neurodegeneration in rat’s brain in vitro.MethodsThe polyphenols were evaluated by characterizing phenolic constituents using high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). The antioxidant properties were assessed through the extracts ability to reduce Fe3+ to Fe2+; inhibit ABTS, DPPH, and OH radicals and Fe2+-induced lipid peroxidation. The effects of the extracts on AChE and MAO were also evaluated.ResultsThe phenolic characterization of R. vomitoria leaf revealed that there were more flavonoids present. Both aqueous and methanolic extracts of R. vomitoria leaf had inhibitory effects with the methanolic extract having higher significant (p≤0.05) free radicals scavenging ability coupled with inhibition of monoamine oxidases. However, there was no significant (p≤0.05) difference obtained in the inhibition of lipid peroxidation and cholinesterases.ConclusionThis study suggests that the rich phenolic constituents of R. vomitoria leaf might contribute to the observed antioxidative and neuroprotective effects. The methanolic extract was more potent than the aqueous extract; therefore, extraction of R. vomitoria leaf with methanol could offer better health-promoting effects in neurodegenerative condition.


2019 ◽  
Vol 36 (4) ◽  
pp. 367-372 ◽  
Author(s):  
Mehmet Gökhan Soydan ◽  
Fatime Erdoğan

The aim of study was to investigate four commercial available antioxidants (groups A (300 mg propyl gallate (PG)+10 mg rosemary extract (RE)/1000 mg), B (240 mg butylated hydroxy anisole (BHA)+80 mg PG+80 mg citric acid (CA)/1000 mg), C (120 mg BHA+120 mg PG+50 mg CA)/1000 mg), D (150 mg butylated hydroxytoluene (BHT)+100 mg BHA+10 mg PG)/1000 mg) used to evaluate oxidation during the storage in fish oil. Antioxidants were added to the fish oil to determine which ones were most effective in preventing oxidation, and fish oil was stored in the amber bottles at room temperature (20 °C) for 90 days. The control group samples were stored under the same conditions and antioxidant was not added. To determine the effect of antioxidants, the recommended by the manufacturer dose of commercial antioxidant (1000 mg kg-1 fish oil) was used in the experimental groups. The formation of the primary and secondary oxidation products in fish oil storage trial was examined by conducting the peroxide value (PV) and p-anisidine value (AV) analyses. The total oxidation value (TOTOX) was calculated based on the PV and AV measurements. Minor changes were observed in the PV of the fish oil during the first 30 days. In the study, antioxidant added samples (groups B, C, D > 5 meq kg-1) were oxidized on the 45th day; on the other hand both control and group A oxidized on the 75th day. A possible prooxidative effect was seen for some of the antioxidants. There was a very little change secondary oxidation of fish oil and no significant effects of all four antioxidant groups on the changes of AV (<20) during the storage period (P>0.05). In addition TOTOX was calculated under GOED (<26) limit during the storage for 90 days. At the end of the study, control samples were not significantly different from the other samples with antioxidant-added. Due to the results obtained at the end of the 90-day study, it was found that none of the antioxidants were used efficiently in this study.


2002 ◽  
Vol 383 (3-4) ◽  
pp. 619-626 ◽  
Author(s):  
N. Noguchi ◽  
H. Yamashita ◽  
J. Hamahara ◽  
A. Nakamura ◽  
H. Kühn ◽  
...  

Abstract The oxidation of low density lipoprotein (LDL) by lipoxygenase has been implicated in the pathogenesis of atherosclerosis. It has been known that lipoxygenasemediated lipid peroxidation proceeds in general via regio, stereo and enantiospecific mechanisms, but that it is sometimes accompanied by a share of random hydroperoxides as side reaction products. In this study we investigated the oxidation of various substrates (linoleic acid, methyl linoleate, phosphatidylcholine, isolated LDL, and human plasma) by the arachidonate 15-lipoxygenases from rabbit reticulocytes and soybeans aiming at elucidating the effects of substrate, lipoxygenase and reaction milieu on the contribution and mechanism of random oxidation and also the effect of antioxidant. The specific character of the rabbit 15-lipoxygenase reaction was confirmed under all conditions employed here. However, the specificity by soybean lipoxygenase was markedly dependent on the conditions. When phosphatidylcholine liposomes and LDL were oxygenated by soybean lipoxygenase, the product pattern was found to be exclusively regio, stereo, and enantiorandom. When free linoleic acid was incorporated into PC liposomes and oxidized by soybean lipoxygenase, the free acid was specifically oxygenated, whereas esterified linoleate gave random oxidation products exclusively. Radicalscavenging antioxidants such as αtocopherol, ascorbic acid and 2-carboxy-2,5,7,8-tetramethyl-6-chromanol selectively inhibited the random oxidation but did not influence specific product formation. It is assumed that the random reaction products originate from free radical intermediates, which have escaped the active site of the enzyme and thus may be accessible to radical scavengers. These data indicate that the specificity of lipoxygenasecatalyzed lipid oxidation and the inhibitory effects of antioxidants depend on the physicochemical state of the substrate and type of lipoxygenase and that they may change completely depending on the conditions.


2003 ◽  
Vol 31 (06) ◽  
pp. 907-917 ◽  
Author(s):  
Eun Ju Cho ◽  
Takako Yokozawa ◽  
Dong Young Rhyu ◽  
Hyun Young Kim ◽  
Naotoshi Shibahara ◽  
...  

The antioxidative activities of 12 medicinal plants and the compounds isolated from them were investigated using the thiocyanate method to evaluate inhibitory effects on lipid peroxidation in the linoleic acid system. The peroxide levels gradually increased during incubation in the presence of linoleic acid over 3 days, and most of the plants inhibited lipid peroxidation. In particular, of the plants tested, Cudrania tricuspidata, Zanthoxylum piperitum, Houttuynia cordata and Ulmus parvifolia reduced lipid peroxidation more effectively as lipid peroxidation progressed, resulting in inhibition of about 80% relative to the control value by the 3rd day of incubation. In addition, the polyphenols isolated from the plants also showed marked and dose-dependent inhibitory effects on lipid peroxidation. The compounds with the strongest activities were 3,4-dihydroxylbenzoic acid, quercetin, the quercetin glycosides quercetin-3-O-β-D-galactoside, quercetin-3-O-α-L-rhamnoside, quercetin-3-O-β-D-glucoside and quercetin-3-O-rutinose, catechin, gallic acid, methyl gallate and rosamultin isolated from Zanthoxylum piperitum, Houttuynia cordata, Rosa rugosa and Cedrela sinensis. Moreover, quercetin glycosides showed stronger activity than quercetin, suggesting that glycosylation increases the antioxidative activity of quercetin. Our results indicate that the medicinal plants and their polyphenols show promise as therapeutic agents for various disorders involving free radical reactions.


1997 ◽  
Vol 78 (3) ◽  
pp. 479-492 ◽  
Author(s):  
Alison M. Wilson ◽  
Ruth M. Sisk ◽  
Nora M. O'Brien

Cholesterol oxidation products (COP) have been reported to influence vital cellular processes such as cell growth, cell proliferation, membrane function and de novo sterol biosynthesis. The objectives of the present study were: (1) to develop an in vitro model using newborn rat kidney (NRK) cells to investigate the actions of COP; (2) to investigate the effect of COP on cell viability, endogenous antioxidant enzymes activities, i.e. superoxide dismutase (EC 1.15.1.1; SOD) and catalase (EC 1.11.1.6; CAT), and the extent of lipid peroxidation in this model; (3) to determine whether the addition of 100–1000 nm-α-tocopherol, β-carotene or butylated hydroxytoluene (BHT) could protect against COP-induced cytotoxicity. NRK cells were cultured in the presence of various concentrations (5–50 μM) of cholesterol or cholestan-3β,5α,6β-triol (cholestantriol) for a period of 24 h. Cholesterol over the range 5–50 μM did not induce cytotoxicity as indicated by the neutral-red-uptake assay or the lactate dehydrogenase (EC 1.1.1.27)-release assay. However, cell viability was compromised by the addition of > 10 μM-cholestantriol (P < 0.05). The addition of β-carotene (100–1000 nM) did not increase cell viability significantly in cholestantriol-supplemented cells. However, the addition of α-tocopherol (1000 nM) and BHT (1000 nM) significantly increased percentage cell viability above that of the cholestantriol-supplemented cells but not back to control levels. SOD and CAT activities in NRK cells significantly decreased (P < 0.05) following incubation with cholestantriol. The addition of > 750 nM-α-tocopherol, β-carotene or BHT returned SOD and CAT activities to that of the control. Lipid peroxidation was significantly induced (P < 0.05) in the presence of cholestantriol. Supplementation of the cells with α-tocopherol (250, 500 or 1000 nM) or BHT (750 or 1000 nM) resulted in a reduction in the extent of lipid peroxidation (P < 0.05). The addition of β-carotene over the concentration range of 250–1000 nM did not reduce lipid peroxidation significantly compared with cells exposed to cholestantriol alone. These findings suggest that addition of exogenous antioxidants may be beneficial in the prevention of COP-induced toxicity in vitro.


2019 ◽  
Vol 20 (8) ◽  
pp. 679-688
Author(s):  
Rasha S. Suliman ◽  
Heyam S. Ali ◽  
Khulud Alhelal ◽  
Wejdan Almutairi ◽  
Shahd Alnasser ◽  
...  

Objective: In the present study, Solenostemma argel effervescent tablets were prepared from Argel methanolic extract. Methods: The tablets were examined for their ability to impede carbon tetrachloride (CCl4)-induced lipid peroxidation in mice liver. The antioxidant activities of the enzymes; super-oxide dismutase (SOD), glutathione peroxidase (GS-PX) along with malondialdehyde level were tested in liver tissues. Results: The obtained results indicated that the antioxidant enzyme activities were remarkably reduced while the level of Malondialdehyde (MDA), which shows lipid peroxidation, and the activity of alanine aminotransferase (a liver function test) were remarkably intensified following intra-peritoneal i.p injection with the single sub-lethal hepatotoxic dose of CCl4 compared to the control. A necrotic lesion in the liver of mice injected with CCl4 was observed by the histopathological examination. The damaging influence of CCl4 was improved by the retreatment with Argel or BHT, which could also be observed in the normal appearance of the liver tissue. Conclusion: In this study, it was concluded that S. Argel and butylated hydroxytoluene (BHT) could be effective by decreasing lipid peroxidation and increasing the activities of antioxidant enzymes. Therefore, Argel might be applied as a hepatoprotective agent without any side effects.


2019 ◽  
Vol 09 ◽  
Author(s):  
Vitaly A. Bekenev ◽  
Anatoly A. Arishin ◽  
Sergei N. Mager ◽  
Izolda V. Bolshakova ◽  
Natalia L. Tretyakova ◽  
...  

Background: Studies were carried out on two breeds of pigs - Pietrain (P), and Kemerovo (K), contrasting in composition of carcasses, and their hybrids. Objective: The purpose of this work was to establish the characteristics of the composition of lipids of intramuscular fat (IMF), back fat and serum, organoleptic qualities in animals of these breeds. Methods: Animals of 10 individuals in each group were fed on a standard feed and slaughtered with a live weight of 95-100 kg. The quality of carcasses, the biochemical characteristics of blood, the composition of fatty acids and cholesterol in meat and fat, and blood lipid peroxidation were determined. Results: Thickness on the back fat (BF) at the level of 6-7 thoracic vertebrae with a live weight of 100 kg was 35.8 ± 1.65 mm in pigs of breed K, in hybrids - 27.6 ± 1.06, and in breed P - 19, 6 ± 1.43 mm. IMF in pigs of breed K was almost 4.5 times greater than that of breed P. IMF K breed contained 2 times less cholesterol than in P (2.34 vs. 4.68%). In the IMF, K was 2 times less polyunsaturated fatty acids (PUFA), than P, 7.82 and 15.22%, linoleic acid, 6.74% and 12.42% respectively (p &lt;0.005).The organoleptic properties of meat and salted back fat were significantly higher in breed K (P = 0.05). Conclusion: The data obtained allow us to establish priorities in the use of products of specific breeds of pigs, depending on medical requirements.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Christina D’Agrosa ◽  
Charles L. Cai ◽  
Faisal Siddiqui ◽  
Karen Deslouches ◽  
Stephen Wadowski ◽  
...  

Abstract Background Neonatal intermittent hypoxia (IH) results in oxidative distress in preterm infants with immature antioxidant systems, contributing to lung injury. Coenzyme Q10 (CoQ10) and fish oil protect against oxidative injury. We tested the hypothesis that CoQ10 is more effective than fish oil for prevention of IH-induced lung injury in neonatal rats. Methods Newborn rats were exposed to two clinically relevant IH paradigms at birth (P0): (1) 50% O2 with brief hypoxia (12% O2); or (2) room air (RA) with brief hypoxia (12% O2), until P14 during which they were supplemented with daily oral CoQ10, fish oil, or olive oil from P0 to P14. Pups were studied at P14 or placed in RA until P21 with no further treatment. Lungs were assessed for histopathology and morphometry; biomarkers of oxidative stress and lipid peroxidation; and antioxidants. Results Of the two neonatal IH paradigms 21%/12% O2 IH resulted in the most severe outcomes, evidenced by histopathology and morphometry. CoQ10 was effective for preserving lung architecture and reduction of IH-induced oxidative stress biomarkers. In contrast, fish oil resulted in significant adverse outcomes including oversimplified alveoli, hemorrhage, reduced secondary crest formation and thickened septae. This was associated with elevated oxidants and antioxidants activities. Conclusions Data suggest that higher FiO2 may be needed between IH episodes to curtail the damaging effects of IH, and to provide the lungs with necessary respite. The negative outcomes with fish oil supplementation suggest oxidative stress-induced lipid peroxidation.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Hironari Nishizawa ◽  
Mitsuyo Matsumoto ◽  
Guan Chen ◽  
Yusho Ishii ◽  
Keisuke Tada ◽  
...  

AbstractFerroptosis is a regulated cell death due to the iron-dependent accumulation of lipid peroxide. Ferroptosis is known to constitute the pathology of ischemic diseases, neurodegenerative diseases, and steatohepatitis and also works as a suppressing mechanism against cancer. However, how ferroptotic cells affect surrounding cells remains elusive. We herein report the transfer phenomenon of lipid peroxidation and cell death from ferroptotic cells to nearby cells that are not exposed to ferroptotic inducers (FINs). While primary mouse embryonic fibroblasts (MEFs) and NIH3T3 cells contained senescence-associated β-galactosidase (SA-β-gal)-positive cells, they were decreased upon induction of ferroptosis with FINs. The SA-β-gal decrease was inhibited by ferroptotic inhibitors and knockdown of Atg7, pointing to the involvement of lipid peroxidation and activated autophagosome formation during ferroptosis. A transfer of cell culture medium of cells treated with FINs, type 1 or 2, caused the reduction in SA-β-gal-positive cells in recipient cells that had not been exposed to FINs. Real-time imaging of Kusabira Orange-marked reporter MEFs cocultured with ferroptotic cells showed the generation of lipid peroxide and deaths of the reporter cells. These results indicate that lipid peroxidation and its aftereffects propagate from ferroptotic cells to surrounding cells, even when the surrounding cells are not exposed to FINs. Ferroptotic cells are not merely dying cells but also work as signal transmitters inducing a chain of further ferroptosis.


Sign in / Sign up

Export Citation Format

Share Document