scholarly journals Numerical modelling of sandwich panels with a non-continuous soft core

2018 ◽  
Vol 157 ◽  
pp. 06007
Author(s):  
Jolanta Pozorska

The paper presents the problem of static analysis of sandwich structures with a non-continuous soft core. In the numerical 3D FE models, the core is divided into separated parts. The contact between these parts has the form of unilateral constraints. The model also allows for local debonding of the facing and local imperfections of sandwich panel geometry. Particular attention is paid to the problem of local instability of the facing that is compressed during bending. The phenomenon of progressive damage and the influence of non-continuity of the core on the structural behavior of the sandwich panel is also discussed.

2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110094
Author(s):  
Ibrahim Elnasri ◽  
Han Zhao

In this study, we numerically investigate the impact perforation of sandwich panels made of 0.8 mm 2024-T3 aluminum alloy skin sheets and graded polymeric hollow sphere cores with four different gradient profiles. A suitable numerical model was conducted using the LS-DYNA code, calibrated with an inverse perforation test, instrumented with a Hopkinson bar, and validated using experimental data from the literature. Moreover, the effects of quasi-static loading, landing rates, and boundary conditions on the perforation resistance of the studied graded core sandwich panels were discussed. The simulation results showed that the piercing force–displacement response of the graded core sandwich panels is affected by the core density gradient profiles. Besides, the energy absorption capability can be effectively enhanced by modifying the arrangement of the core layers with unclumping boundary conditions in the graded core sandwich panel, which is rather too hard to achieve with clumping boundary conditions.


1980 ◽  
Vol 47 (2) ◽  
pp. 383-388 ◽  
Author(s):  
K. Kemmochi ◽  
T. Akasaka ◽  
R. Hayashi ◽  
K. Ishiwata

In this paper, a modified theory based upon Reissner’s procedure for the shear-lag effect of the sandwich panel is presented, which includes the effects of the anisotropy of the faces and the shearing rigidity of the core. In order to verify this theory, bending experiments were performed with sandwich panels composed of a soft core, stiffeners, and orthotropic faces. It was found that the effective bending rigidity calculated from this theory was lower than that derived from the classical bending theory and that the theoretical strain distribution on the faces agreed well with the experimental results.


2021 ◽  
Vol 250 ◽  
pp. 02027
Author(s):  
Ibrahim Elnasri

In this study, we numerically and analytically investigate the impact perforation of sandwich panels made of 0.8 mm 2024-T3 aluminum alloy skin sheets and graded polymeric hollow sphere cores with four different gradient profiles. A suitable numerical model was conducted using the LS-DYNA code, calibrated with an inverse perforation test, instrumented with a Hopkinson bar, and validated using experimental data from the literature. Moreover, the effect of boundary conditions on the perforation resistance of the studied graded core sandwich panels was discussed. The simulation results showed that the piercing force– displacement response of the graded core sandwich panels is affected by the core density gradient profiles. Besides, the energy absorption capability can be effectively enhanced by modifying the arrangement of the core layers with un-clumping boundary conditions in the graded core sandwich panel, which is rather too hard to achieve with clumping boundary conditions. Finally, an analytical model, taken account only gradient in the quasi-static plateau stress, is developed to predict the top skin pic peak load of the graded sandwich panel.


Author(s):  
Tianyu Zhou ◽  
Pan Zhang ◽  
Yuansheng Cheng ◽  
Manxia Liu ◽  
Jun Liu

In this paper, the numerical model was developed by using the commercial code LS/DYNA to investigate the dynamic response of sandwich panels with three PVC foam core layers subjected to non-contact underwater explosion. The simulation results showed that the structural response of the sandwich panel could be divided into four sequential regimes: (1) interaction between the shock wave and structure, (2) compression phase of sandwich core, (3) collapse of cavitation bubbles and (4) overall bending and stretching of sandwich panel under its own inertia. Main attention of present study was placed at the blast resistance improvement by tailoring the core layer gradation under the condition of same weight expense and same blast load. Using the minimization of back face deflection as the criteria for evaluating the blast resistant of panel, the panels with core gradation of high/middle/low or middle/low/high (relative densities) from the front face to back face demonstrated the optimal resistance. Moreover, the comparative studies on the blast resistance of the functionally graded sandwich panels and equivalent ungraded ones were carried out. The optimum functionally graded sandwich panel outperformed the equivalent ungraded one for relatively small charge masses. The energy absorption characteristics as well as the core compression were also discussed. It is found that the core gradation has a negligible effect on the whole energy dissipation of panel, but would significantly affect the energy distribution among sandwich panel components and the compression value of core.


Author(s):  
Keramat M Fard ◽  
Mostafa Livani

Based on a new improved higher-order sandwich panel theory, the buckling analysis of a truncated conical composite sandwich panel with simply supported and fully clamped boundary conditions was performed for the first time. This panel was subjected to axial compression and external pressures. The governing equations were derived by using the principle of minimum potential energy. The first-order shear deformation theory was used for the composite face sheets, and for the core, a polynomial description of the displacement fields was assumed. Geometry was used for the consideration of different radii curvatures of the face sheets and the core was unique. The effects of types of boundary conditions, conical angles, length to smaller radius of core ratio, core to panel thickness ratio, and smaller radius of core to panel thickness ratio on the buckling response of truncated conical composite sandwich panels were also studied. The results were validated by the results published in the literature and the presented FE results were obtained by ABAQUS software.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 70 ◽  
Author(s):  
Robert Studziński ◽  
Tomasz Gajewski ◽  
Michał Malendowski ◽  
Wojciech Sumelka ◽  
Hasan Al-Rifaie ◽  
...  

In this paper, an experimental investigation is presented for sandwich panels with various core layer materials (polyisocyanurate foam, mineral wool, and expanded polystyrene) when subjected to a justified blast load. The field tests simulated the case for when 5 kg of trinitrotoluene (TNT) is localized outside a building’s facade with a 5150 mm stand-off distance. The size and distance of the blast load from the obstacle can be understood as the case of both accidental action and a real terroristic threat. The sandwich panels have a nominal thickness, with the core layer equal 100 mm and total exterior dimensions of 1180 mm × 3430 mm. Each sandwich panel was connected with two steel columns made of I140 PE section using three self-drilling fasteners per panel width, which is a standard number of fasteners suggested by the producers. The steel columns were attached to massive reinforced concrete blocks via wedge anchors. The conducted tests revealed that the weakest links of a single sandwich panel, subjected to a blast load, were both the fasteners and the strength of the core. Due to the shear failure of the fasteners, the integrity between the sandwich panel and the main structure is not provided. A comparison between the failure mechanisms for continuous (polyisocyanurate foam and expanded polystyrene) and non-continuous (mineral wool) core layer materials were conducted.


Author(s):  
Gefu Ji ◽  
Zhenyu Ouyang ◽  
Guoqiang Li ◽  
Su-Seng Pang

Sandwich construction has been extensively used in various fields. However, sandwich panels have not been fully exploited in critical structural applications due to damage tolerance and safety concern. A major problem of sandwich panels is the debonding at or near the core/face sheet interface, especially under impact loading, which can lead to a sudden loss of structural integrity and cause catastrophic consequences. In order to improve the debonding resistance and energy absorption of sandwich panel under impact loadings, a new foam core is proposed which is a hybrid core consisting of hollow metallic microtubes reinforced polymer matrix. The objective of this study was to characterize its static and dynamic performances. Two types of new hybrid cores were investigated in this work. One consisted of polymer resin reinforced by transversely aligned continuous metallic militubes, denoted as type-I sandwich panel. The other was made of polymer resin reinforced by aligned continuous in-plane metallic militubes, denoted as type-II sandwich panel. Additionally, the traditional sandwich panels with polymeric syntactic foam core were also prepared for comparisons. Static and impact tests demonstrated that interface debonding and subsequent shear failure in the core could be largely excluded from the type-II panel. Meanwhile, a significant transition to ductile failure was observed in type-II sandwich panel with dramatically enhanced load capacity and impact energy dissipation. The results indicated that type-II panel may be considered a promising option for critical structural applications featured by debonding and impact tolerance.


Author(s):  
Guoqiang Li ◽  
Gefu Ji ◽  
Su-Seng Pang

Sandwich construction has been extensively used in various fields. However, sandwich panels have not been fully exploited in critical structural applications due to damage tolerance and safety concern. A major problem of sandwich panels is the debonding at or near the core/face sheet interface, especially under impact loading, which can lead to a sudden loss of structural integrity and cause catastrophic consequences. In order to improve the debonding resistance and energy absorption of sandwich panel under impact loadings, a new foam core is proposed which is a hybrid core consisting of grid stiffened hollow metallic millitubes reinforced polymer matrix. The objective of this study was to characterize its dynamic performances. The core consisted of polymer resin reinforced by grid stiffened continuous metallic millitubes. Low velocity impact test demonstrated that new core panel may be considered a promising option for critical structural applications featured by debonding and multiple impact tolerance.


2014 ◽  
Vol 611-612 ◽  
pp. 786-793 ◽  
Author(s):  
Janne Lämsä ◽  
Antti Järvenpää ◽  
Kari Mäntyjärvi

The main aim of the study was to develop forming tools for wide (over 1.2 meter) sandwich panels. Longitudinal laminating technology was selected for tool manufacturing due to its flexibility and cost efficiency. Laminating technology enables easy modification of the tool dimensions afterwards. The function to optimize or vary the dimensions of the tool was set as a secondary objective for the study. Forming tools for sandwich panels are usually complicated structures and joining of the plates can be difficult in some cases. Typically sandwich forming tools are capable to produce only narrow panels (less than 1 meter) and optimization must be done during designing of the tool. In this study, a rapid designing and manufacturing of a flexible sandwich panel forming tool was investigated. Sandwich panels are usually applied in light structures or voice covers due to their very low weight, high stiffness, durability and production cost savings. Designing of the forming tool was made by using a 3D CAD program. Conventional steel plates were used for the forming tool and the assembly was done by fixing the plate parts longitudinally together (laminating). Most important criterion for the forming tool was its capability to produce high quality geometry for the core. Laser welding assembly showed that the quality of the core was good enough for welding the lap joints properly. Both of the objectives were fulfilled: 1) forming tools were suitable for forming of wide cores (1.2 meter) and 2) the structure of the laminated tool enables to change or add new plate parts to change the dimensions of the final product.


Sign in / Sign up

Export Citation Format

Share Document