Torsion-based layout optimization of shear walls using multi-objective water cycle algorithm

2021 ◽  
pp. 136943322110179
Author(s):  
Hamid Dehnavipour ◽  
Hossein Meshki ◽  
Hosein Naderpour

In shear wall-based buildings, locating the shear wall in plan has an important role in the resistance of seismic loading. In this article, the minimum torsion is considered as one of the main goals for optimal layout of shear walls, unlike the common method that accepts a certain torsion limit. The method presented is in accordance with the principles of design codes with emphasis on reaching the least possible torsion effect. By using a multi-objective function, based on the Pareto solutions, the torsion function behaves against the cost of a structure subjected to constraints of flexural strength, shear strength, and drift. This approach has the ability to layout shear walls in irregular plans and those which have high architectural limits. Also, it can fulfill the main goal of a structural engineer in order to satisfy the requirements of an architectural plan and obtain its minimum torsion effect as well. This method has been applied to various types of regular and irregular plans according to the classification of seismic design codes. Results show that besides minimizing the cost, the torsion effect reaches the minimum possible value considered by the seismic design code, as compared with other methods.

2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Sung-Jun Pang ◽  
Kyung-Sun Ahn ◽  
Seog Goo Kang ◽  
Jung-Kwon Oh

AbstractIn this study, the lateral resistances of mass timber shear walls were investigated for seismic design. The lateral resistances were predicted by kinematic models with mechanical properties of connectors, and compared with experimental data. Four out of 7 shear wall specimens consisted of a single Ply-lam panel and withdrawal-type connectors. Three out of 7 shear wall specimens consisted of two panels made by dividing a single panel in half. The divided panels were connected by 2 or 4 connectors like a single panel before being divided. The applied vertical load was 0, 24, or 120 kN, and the number of connectors for connecting the Ply-lam wall-to-floor was 2 or 4. As a result, the tested data were 6.3 to 52.7% higher than the predicted value by kinematic models, and it means that the lateral resistance can be designed by the behavior of the connector, and the prediction will be safe. The effects of wall-to-wall connectors, wall-to-floor connectors and vertical loads on the shear wall were analyzed with the experimental data.


Author(s):  
Ali Kaveh ◽  
Mohamad Farhadmanesh

In this paper three well-known metaheuristic algorithms comprising of Colliding Bodies Optimization, Enhanced Colliding Bodies Optimization, and Particle Swarm Optimization are employed for size and performance optimization of steel plate shear wall systems. Low seismic and high seismic optimal designs of these systems are performed according to the provisions of AISC 360 and AISC 341. In one part of the low seismic example, a moment frame and Steel Plate Shear Wall (SPW) strength are compared. Performance optimization of the Special Plate Shear Wall (SPSW) for size optimized system is one of the objectives of the high seismic example. Finally, base shear sensitivity analysis on optimal high seismic design of SPSW and size optimization of a 6-story to a 12-story SPSW are performed to have a comprehensive view on the optimal design of steel plate shear walls.


2019 ◽  
Vol 13 (03n04) ◽  
pp. 1940005 ◽  
Author(s):  
Zijian Cao ◽  
Quanwang Li

The quality of precast concrete (PC) component connections is one of the main factors that affect the seismic reliability of PC structures. China is developing PC structures in high seismic regions, and it is important to assess the effect of connection deficiency on seismic performance of PC structures. This paper presents a comprehensive method to assess the seismic reliability of PC shear wall-frame structure whose wall panels are assembled through grouted sleeve connections which are susceptible to insufficient grouting. Considering the uncertainties associated with the number, locations and loading behavior of defected sleeve connections, the probabilistic behavior of PC shear wall with defected connections is estimated through point estimate method using simulation results of the experiment-validated finite element model. Then, a simple shear wall-frame building, designed for the seismic intensity of 8 according to China’s seismic design code, is modeled on platform of OpenSees. Static pushover analyses and seismic fragility analyses are performed on the structure with different degrees of connection deficiency, to investigate the effect of deficiency occurrence rate on seismic performance. The seismic performance is significantly affected by connection deficiencies; it no longer meets the requirement of seismic design as the deficiency occurrence rate exceeds 25%, so the occurrence rate of defected connections should be controlled carefully in construction site.


Author(s):  
Hridya. K

Torsion force is a load that is a applied to a building through torque. The torque applied creates a shear stress. If a torsion force is large enough, it can cause a building to undergo a twisting action. The main aim of the project is to study the effect of location of shear wall on torsional performance of symmetric and asymmetric high-rise building ,post tensioned slabs are being used in the construction of building hence the thesis also analyze these post tensioned slab structures by changing shear wall configuration. Post tensioned slab structures have weak resistance to lateral loads. so to provide stiffness to structures against lateral forces shear walls are used. A study of 30 storey building in zone III, is considered and determine various parameters like base shear, storey drift, and storey displacement.post-tensioning is a mature technology as it provide efficient, economic and elegant structural solutions for a wide range of applications. Post-tensioned flat slab could be a better option compared to RCC flat slab, in respect of the cost of project and time of construction. ETABS 2017 software is used for the analysis.


Author(s):  
Alka Susan Mathew ◽  
Regi P. Mohan

Shear walls are efficient monotonic load resisting systems in high rise or super high rise framed structures and hence are the most critical elements in seismic design. This paper focus on application of Aluminium sandwich shear walls (ASSW) consist of aluminium panels as top and bottom plates and aluminium core to serve as seismic protection system. ASSW have the advantage that these are light weight systems with high stiffness to weight ratio and bending strength. These could well replace steel shear walls which are having more structural weight. This paper presents analytical analysis of performance of ASSW under monotonic and seismic loading using ANSYS software. Sandwich shear wall models were first simulated, verified and analysis was carried out. The response of aluminum sandwich shear wall with two different core shapes or configurations are studied to obtain optimum core shape or configuration for maximum load bearing capacity. Then full scale monotonic and cyclic tests were conducted on aluminium sandwich shear wall with optimum core shapes or configurations. The obtained results allow useful information for the selection of aluminium sandwich shear wall in the seismic design of framed structures.


1975 ◽  
Vol 2 (4) ◽  
pp. 592-601 ◽  
Author(s):  
T. Paulay ◽  
S. M. Uzumeri

The 1975 Canadian Building Code for the design of reinforced concrete shear wall buildings in high seismic risk areas includes provisions that are new and significant. This paper critically examines some of these provisions, especially as they apply to cantilever shear walls. Clarifications in the definitions of curvature, member, and system ductilities are attempted. The relationship between curvature and system ductility is examined. Code provisions on allowable shear stress in the wall in the plastic hinge region and the provisions for the classification of the walls are discussed. Attention of the designer is drawn to some aspects of the code and the commentary that may result in structures of doubtful safety.


2021 ◽  
Vol 7 (3) ◽  
pp. 123
Author(s):  
Ercan Işık

The destructive earthquakes and structural damages reveal the importance of the rules of earthquake-resistant structural design. The need of update and renewal of these rules periodically become inevitable as a result of scientific developments, innovations in construction technologies and building materials. Turkey which is an extremely region in terms of seismicity was adapted to these changes through time. The last five seismic design codes (1968, 1975, 1998, 2007 and 2018) were taken into account within the scope of this study. The differences in dimension and material grades of structural elements such as columns as beams have been compared in detail for each code. Three different analysis types have been performed for a 4-story reinforced-concrete model such as eigenvalue, pushover and dynamic time-history via the minimum conditions for these elements in each code. The natural vibration period of the building was obtained with empirical formulas stipulated in different codes for the sample RC building, additionally. The size and the type of the materials used in beams and columns within the last five codes have been changed. We see that the changes in these two important parameters which affect the behavior of buildings during an earthquake, enhance the performance of the building. It has been revealed that changes and renewals in seismic design codes are a necessity and gain. It has been clearly revealed that each amended code increases the stiffness and enhance the seismic capacity of a structure. Each updated seismic design code is aimed to complete the deficiency of the previous one. The results revealed that there are changes to be made to increase the seismic capacity of the structure at the point of reducing earthquake damage.


Author(s):  
Mr. Prashant Sharma

Abstract: To decrease the overall cost of the project, it is highly recommended dropping the cost in different manners. To make economic structure, structure without losing the stiffness standards and the cost cutting should be done at every construction stages. The dual systems in building structure consist of structural walls and moment resisting frames. The walls are made up of RCC, which is expensive material. The purpose of current study is to discover the effect of reducing shear wall area in multistorey building to decrease cost. The buildings are provided with shear walls to improve the lateral load resistance. Post parametric analysis results shows that, the reduction in shear wall area should be modified to a certain limit up to 20 % for cost cutting. But in this study, the opening areas of shear wall are increased above 20% to 36.75% and verify the results of post analysis. In this study 8 cases are analysed with 0%, 11%, 14.20%, 20%, 33.20%, 29.05%, 35%, & 36.75% opening in shear wall and analysis is perform by Response Analysis Method of dynamic analysis using Staad.pro V8i software in Zone III of multistorey building (G+18). The effects of opening in the wall are studied by considering the moments, shear, and torsion, and axial forces in the beams and columns. It is observed that after a certain percentage of shear opening in walls the building fails in the drift at a certain height. To resolve this problem the flared area of height 0.5 m at the height of failure is provided to counteract the effect of drift. It was observed that by the introduction of shear belt the drift reduces which made the structure stable. Finally in this study, the opening of shear wall area is increased up to 35% and concrete area is reduced 1170.20 m2 , which is 534.2m2 more than the previous studies. Keywords: Shear Wall, Opening Area, Multi-storeyed Building, Seismic effects, Response Spectrum Method


2013 ◽  
Vol 7 (1) ◽  
pp. 189-195 ◽  
Author(s):  
Zhijuan Sun ◽  
Jiliang Liu ◽  
Mingjin Chu

In order to meet the needs of performance-based seismic design, a new type of adaptive-slit shear wall that is easy to construct and behaves well under cyclic loading is introduced to improve the seismic performance of conventional shear wall structures. The seismic damage of an adaptive-slit shear wall develops gradually and it transforms from integral wall into slit wall. The mechanical characteristics of adaptive-slit shear walls suggest that such walls are adaptive to various seismic requirements under earthquakes of different intensities. Compared with conventional shear walls, the new wall is highly ductile and is advantageous in controlling the seismic damage process.


Sign in / Sign up

Export Citation Format

Share Document