scholarly journals Laboratory investigation of a bridge scour monitoring method using decentralized modal analysis

2021 ◽  
pp. 147592172098512
Author(s):  
Muhammad Arslan Khan ◽  
Daniel P McCrum ◽  
Luke J Prendergast ◽  
Eugene J OBrien ◽  
Paul C Fitzgerald ◽  
...  

Scour is a significant issue for bridges worldwide that influences the global stiffness of bridge structures and hence alters the dynamic behaviour of these systems. For the first time, this article presents a new approach to detect bridge scour at shallow pad foundations, using a decentralized modal analysis approach through re-deployable accelerometers to extract modal information. A numerical model of a bridge with four simply supported spans on piers is created to test the approach. Scour is modelled as a reduction in foundation stiffness under a given pier. A passing half-car vehicle model is simulated to excite the bridge in phases of measurement to obtain segments of the mode shape using output-only modal analysis. Two points of the bridge are used to obtain modal amplitudes in each phase, which are combined to estimate the global mode shape. A damage indicator is postulated based on fitting curves to the mode shapes, using maximum likelihood, which can locate scour damage. The root mean square difference between the healthy and scoured mode shape curves exhibits an almost linear increase with increasing foundation stiffness loss under scour. Experimental tests have been carried out on a scaled model bridge to validate the approach presented in this article.

Author(s):  
Lara Erviti Calvo ◽  
Gorka Agirre Castellanos ◽  
Germán Gimenez

The application of Operational Modal Analysis (OMA) in the railway sector opens a broad field of opportunities. The validation of the numerical model employed in the design phase is usually performed employing data obtained in static tests. The drawback is that some suspension parameters, such as dampers, only have an influence in the dynamic behavior and not in the static behavior. Because of that, the use of the mode shapes identified from track measurements in combination with the static tests leads to a more accurate validation of the numerical model. Apart from that, most passenger comfort and dynamic problems are associated to slightly damped modes. A correct identification of the modal parameters can be used as a continuous design improvement tool to improve the comfort and dynamic characteristics of future designs. Another valuable application of OMA techniques is the identification of the mode shapes corresponding to instabilities, due to the safety impact that they have. In railway vehicles, instabilities are associated to mode shapes that present a damping rate which decreases with the increase of the running speed. Above a certain speed value, the excitation coming from track cannot be damped by the vehicle and it reaches an unstable condition. This unstable condition leads to high acceleration levels experienced by the passengers and high interaction forces between the wheel and the rail that may lead to safety hazards. The speed above which the vehicle is unstable is known as critical speed, and has to be greater than the maximum speed of the vehicle with a reasonable safety margin. The use of OMA techniques allows identifying the mode shape that causes the instability. This paper presents the application of OMA techniques to measurements performed on a passenger vehicle, in which the speed was increased until the vehicle was unstable. The mode shape that caused the instability was identified as well as its corresponding natural frequency and damping rate.


2011 ◽  
Vol 291-294 ◽  
pp. 3-11 ◽  
Author(s):  
Xi Jun Ye ◽  
Tian Feng Zhu ◽  
Quan Sheng Yan ◽  
Wei Feng Wang

This paper provides an experimental verification of decentralized approach for modal test and analysis of a 30 meters long railway overpass bridge. 11 Imote2 smart sensor nodes were implemented on the WSSN. In order to compare the identification precision of different topologies, acceleration responses were obtained under centralized and 3 different decentralized topologies. Local modal parameters were estimated by NExT/ERA within each local group; true modes were then distinguished from spurious modes by EMAC and finite-element analysis. In order to estimate global mode shape, a least square method was used for calculating the normalization factor. Then the global mode shapes were determined by normalization factors and local mode shapes. The result demonstrates that the more overlapping nodes in each group, the more accurate the global mode shape will be; the decentralized approach is workable for modal test of large-scale bridge.


Author(s):  
Lassaad Ben Fekih ◽  
Georges Kouroussis ◽  
David Wattiaux ◽  
Olivier Verlinden ◽  
Christophe De Fruytier

An approach is proposed to identify the modal properties of a subsystem made up of an arbitrary chosen inner module of embedded space equipment. An experimental modal analysis was carried out along the equipment transverse direction with references taken onto its outer housing. In parallel, a numerical model using the finite element (FE) method was developed to correlate with the measured results. A static Guyan reduction has led to a set of master degrees of freedom in which the experimental mode shapes were expanded. An updating technique consisting in minimizing the dynamic residual induced by the FE model and the measurements has been investigated. A last verification has consisted in solving the numeric model composed of the new mass and stiffness matrices obtained by means of a minimization of the error in the constitutive equation method.


2013 ◽  
Vol 668 ◽  
pp. 612-615
Author(s):  
Li Zhang ◽  
Guang Yuan Nie ◽  
Hong Wu ◽  
Jie Chen

In this paper, the simulation with ANSYS software and the experimental modal analysis by impacting are carried out on the electronic button-sewing machine shell. The modal parameters, such as the natural frequency, the damping ratio and the mode shape, are obtained. Comparative analysis of their results shows that the mode shapes of the machine shell are mainly the outward-expanding and inward-contracting vibrations, which provides a useful reference for vibration and noise reduction of the electronic button-sewing machine.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Liangliang Yu ◽  
Hanwen Song

A mass-change-based method based on output-only data for the rescaling of mode shapes in operational modal analysis (OMA) is introduced. The mass distribution matrix, which is defined as a diagonal matrix whose diagonal elements represent the ratios among the diagonal elements of the mass matrix, is calculated using the unscaled mode shapes. Based on the theory of null space, the mass distribution vector or mass distribution matrix is obtained. A small mass with calibrated weight is added to a certain location of the structure, and then the mass distribution vector of the modified structure is estimated. The mass matrix is identified according to the difference of the mass distribution vectors between the original and modified structures. Additionally, the universal set of modes is unnecessary when calculating the mass distribution matrix, indicating that modal truncation is allowed in the proposed method. The mass-scaled mode shapes estimated in OMA according to the proposed method are compared with those obtained by experimental modal analysis. A simulation is employed to validate the feasibility of the method. Finally, the method is tested on output-only data from an experiment on a five-storey structure, and the results confirm the effectiveness of the method.


2021 ◽  
Vol 13 (17) ◽  
pp. 3471
Author(s):  
Maksat Kalybek ◽  
Mateusz Bocian ◽  
Wojciech Pakos ◽  
Jacek Grosel ◽  
Nikolaos Nikitas

Despite significant advances in the development of high-resolution digital cameras in the last couple of decades, their potential remains largely unexplored in the context of input-output modal identification. However, these remote sensors could greatly improve the efficacy of experimental dynamic characterisation of civil engineering structures. To this end, this study provides early evidence of the applicability of camera-based vibration monitoring systems in classical experimental modal analysis using an electromechanical shaker. A pseudo-random and sine chirp excitation is applied to a scaled model of a cable-stayed bridge at varying levels of intensity. The performance of vibration monitoring systems, consisting of a consumer-grade digital camera and two image processing algorithms, is analysed relative to that of a system based on accelerometry. A full set of modal parameters is considered in this process, including modal frequency, damping, mass and mode shapes. It is shown that the camera-based vibration monitoring systems can provide high accuracy results, although their effective application requires consideration of a number of issues related to the sensitivity, nature of the excitation force, and signal and image processing. Based on these findings, suggestions for best practice are provided to aid in the implementation of camera-based vibration monitoring systems in experimental modal analysis.


Author(s):  
Farbod Khoshnoud ◽  
Clarence W. de Silva

A novel method of modal analysis for vibration modeling of systems is presented in this paper. In the developed method, first, mode shapes of the structure that is being analyzed are approximated. The approximate mode shapes are expressed by fuzzy sets where approximate deflections or displacement magnitudes of the mode shapes are described by fuzzy linguistic terms such as Zero, Medium, and Large. Fuzzy membership functions provide a means of dealing with the imprecisely defined system and it gives access to a large repertoire of tools available in the field of fuzzy reasoning. Second, fuzzy representations of the approximate mode shapes, called Fuzzy Mode Shapes in this paper, are updated using modal analysis data as obtained through experimentation. Finally, artificial neural networks are used as a tool to obtain an accurate version of the mode shape data by learning the target set of the data. An appropriate analogy of the application of Fuzzy Mode Shapes in the first step is the Starting Mode Shape Vectors in numerical eigenvector problem where the starting vector is updated through an iterative process. In this paper iterative updating process of mode shapes is carried out for the application of experimental modal testing. In this approach the differences between the fuzzy mode shapes and the corresponding measured modal testing data are minimized through an iterative process. In validating the developed technique for vibration modeling of one-dimensional and two-dimensional elastic bodies and structures, modeling of elastic beams, a clamped-free-clamped-free plate and a frame are used as illustrative examples. The solutions of the corresponding simulations are compared with the results from finite element computations and analytical model solutions. The good agreement of the results obtained for these models justifies the application of the developed method in experimental vibration modeling of systems. Use of the fuzzy-neural approach as developed in the paper expands the coverage of experimentally measured data, which is normally limited to a small number of measurement sets due to the limited number of available vibration sensors in the analyzed system. Neural networks provide a satisfactory interpolation of two sets of data including a) modal test data, which is accurate but is normally available only for a few measured points, and b) Fuzzy Mode Shapes, which are available for large number of points but are approximate.


In this paper, Mode Shape Based Damaged Detection Technique (MSBDT) has been applied for plate-like structures to recognize the damage location and quantify the damage length. Two alternative approaches are exclusively used to extract damage indexes through mode shapes of undamaged plate (i.e. reference data) and damaged plate. The absolute difference of mode shapes used in first approach and mode shape curvatures used in second approach of undamaged and damaged plates. Healthy Aluminium plate was tested in the laboratory for accurate material properties and considered three different damage cases by changing the crack orientation and location for successfully implementation of above approaches. In order to make certain the sensitivity of the proposed approaches, natural frequencies and corresponding mode shapes for first six modes in transverse direction of a plate are obtained by Finite Element Modal Analysis (FEMA) in ANSYS 18.1 and validated by Experimental Modal Analysis (EMA) in virtual instrumentation environment using LabView software.


2017 ◽  
Vol 17 (3) ◽  
pp. 514-531 ◽  
Author(s):  
Yongchao Yang ◽  
Charles Dorn ◽  
Tyler Mancini ◽  
Zachary Talken ◽  
James Theiler ◽  
...  

Detecting damage in structures based on the change in their dynamics or modal parameters (modal frequencies and mode shapes) has been extensively studied for three decades. The success of such a global, passive, vibration-based method in field applications, however, has long been hindered by the bottleneck of low spatial resolution vibration sensor measurements. The primary reason is that damage typically initiates and develops in local regions that need to be captured and characterized by very high spatial resolution vibration measurements and modal parameters (mode shapes), which are extremely difficult to obtain using traditional vibration measurement techniques. For example, accelerometers and strain-gauge sensors are typically placed at a limited number of discrete locations, providing low spatial resolution vibration measurements. Laser vibrometers provide high-resolution measurements, but are expensive and make sequential measurements that are time- and labor-consuming. Recently, digital video cameras—which are relatively low cost, agile, and able to provide high spatial resolution, simultaneous, pixel measurements—have emerged as a promising tool to achieve full-field, high spatial resolution vibration measurements. Combined with advanced vision processing and unsupervised machine algorithms, a new method has recently been developed to blindly and efficiently extract the full-field, high-resolution, dynamic parameters from the video measurements of an operating, output-only structure. This work studies the feasibility of performing damage detection using the full-field, very high spatial resolution mode shape (of the fundamental mode) blindly extracted from the video of the operating (output-only) structure without any knowledge of reference (healthy) structural information. A spatial fractal dimension analysis is applied on the full-field mode shape of the damaged structure to detect damage-induced irregularity. Additionally, the equivalence between the fractal dimension and the squared curvature (modal strain energy) of the mode shape curve, when of high spatial resolution, is mathematically derived. Laboratory experiments are conducted on bench-scale structures, including a building structure and a cantilever beam, to validate the approach. The results illustrate that using the full-field, very high-resolution mode shape enables detection of minute, non-visible, damage in a global, completely passive sensing manner, which was previously not possible to achieve.


Sign in / Sign up

Export Citation Format

Share Document