scholarly journals Comparative study of mechanical characteristics of recycled PET fibres for automobile seat cover application

2018 ◽  
Vol 48 (6) ◽  
pp. 992-1008 ◽  
Author(s):  
Giulia Albini ◽  
Valentina Brunella ◽  
Bartolomeo Placenza ◽  
Brunetto Martorana ◽  
Vito Guido Lambertini

Polyethylene terephthalate is a thermoplastic polymer with a wide range of uses, including synthetic fibres and containers for beverages and other liquids. Recycling plastics reduces the amount of energy and natural resources needed to create virgin plastics. Polyethylene terephthalate containers and bottles are collected and then broken down into small flakes used to produce new products such as textile fibres. Thermo-mechanical degradation may happen during the recycling process and presence of contaminants affects the final product characteristics. Two kinds of recycled polyethylene terephthalate fibres were used for fabrics production: post-consumer polyethylene terephthalate fibres and a blend of post-consumer and post-industrial polyethylene terephthalate fibres. Focusing on knitted and flat-woven textile structures, main mechanical properties of the fabrics were assessed by various tests, like tensile strength test and wear resistance test. A comparative study with the current production of virgin polyethylene terephthalate fabrics was useful to evaluate high standards accordance for automotive field. Both knitted and flat-woven recycled polyethylene terephthalate fabrics had excellent performance after mechanical tests. Post-consumer polyethylene terephthalate fabrics had the best results, especially after wear resistance test. These results allow an evaluation of their applications.

2020 ◽  
Vol 12 (16) ◽  
pp. 6356
Author(s):  
Byung-Hyun Ryu ◽  
Sojeong Lee ◽  
Ilhan Chang

The importance of permeable and pervious pavements in reducing urban stormwater runoff and improving water quality is growing. Here, a new pervious pavement block material based on recycled polyethylene terephthalate (PET) waste is introduced, which could contribute to reducing global plastic waste via PET’s utilization for construction material fabrication. The engineering properties and durability of recycled PET aggregate (RPA) pervious blocks are verified through flexural tests, in situ permeability tests, clogging tests, and freeze-thaw durability tests, and their cost-effectiveness is assessed by comparison with existing permeable/pervious pavers. Their engineering and economic characteristics confirm that the RPA pervious blocks are suitable for use in urban paving.


2020 ◽  
Vol 993 ◽  
pp. 1511-1517
Author(s):  
Shan Shan Liu ◽  
Ye Chen ◽  
Yu Hui Wang ◽  
Ling Ling Gao ◽  
Fu You Ke ◽  
...  

A method to determine the volatile organic compounds (VOCs) in the recycled polyethylene terephthalate fiber was presented by using the headspace sampling-gas chromatography coupled to flame ionization detector (HS-GC-FID), in order to evaluate the level of VOC contamination. The extraction variables, such as the incubation temperature, the pre-incubation time and the size of the vial, were also studied. The effects on the determination of VOC were also compared using two type chromatographic columns. The optimal conditions were found using a headspace sampling for 20 min at 100 °C, where 120 mL vials and TM-1 column were prior to analysis of benzene compounds in PET(polyethylene terephthalate) fibers. The results can be used in analysis of VOC from recycled PET fibers.


2017 ◽  
Vol 50 (1) ◽  
pp. 13-35 ◽  
Author(s):  
Sayed Kamal Taghavi ◽  
Hamzeh Shahrajabian ◽  
Hamid Mohammad Hosseini

In this study, for recycling polyethylene terephthalate, a blend of recycled polyethylene terephthalate (RPET) and high-density polyethylene (HDPE) with maleic anhydride polyethylene (MAPE) and maleic anhydride-grafted styrene–ethylene/butylene–styrene (SEBS-g-MA) were used. The effect of compatibilizers in RPET was investigated by mechanical test (tensile and flexural tests), thermal test (differential scanning calorimetry (DSC)), and melt flow index test. The morphology of fracture surface of samples was investigated by scanning electron microscopy (SEM). The mechanical tests showed that elongation at break point and the fracture energy of samples with composition of RPET (70 wt%)/HDPE (15 wt%)/MAPE (15 wt%) and RPET (75 wt%)/HDPE (10 wt%)/SEBS-g-MA (15 wt%) increased significantly. Results of DSC test and SEM photography showed that ternary blend of RPET/HDPE/MAPE has better compatibility compared with RPET/HDPE/SEBS-g-MA. SEM images showed that MAPE provides better bonding between RPET and HDPE compared with SEBS-g-MA. MAPE was dispersed in RPET better than SEBS-g-MA.


2021 ◽  
Vol 30 ◽  
pp. 263498332110000
Author(s):  
Helge Schneevogt ◽  
Kevin Stelzner ◽  
Buket Yilmaz ◽  
Bilen Emek Abali ◽  
André Klunker ◽  
...  

Herein, the effects of recycled polymers on the mechanical properties of additively manufactured specimens, specifically those derived by fused deposition modelling, are determined. The intention is to investigate how 3D-printing can be more sustainable and how recycled polymers compare against conventional ones. Initially, sustainability is discussed in general and more sustainable materials such as recycled filaments and biodegradable filaments are introduced. Subsequently, a comparison of the recycled filament recycled Polyethylene terephthalate (rePET) and a conventional Polyethylene terephthalate with glycol (PETG) filament is drawn upon their mechanical performance under tension, and the geometry and slicing strategy for the 3D-printed specimens is discussed. Finally, the outcomes from the experiments are compared against numerically determined results and conclusions are drawn.


2021 ◽  
Vol 879 ◽  
pp. 13-21
Author(s):  
M.M.H. Shamsudin ◽  
N.H. Hamid ◽  
M.A. Mohd Fauzi

This paper presents the feasibility study of adding recycled Polyethylene Terephthalate (PET) fiber obtained from drinking water bottle as admixture material in the concrete. A few numbers of tests were conducted to determine the physical and mechanical properties of recycled PET fiber reinforced concrete such as slump test, compressive strength test and flexural strength test. The effect of incorporating the recycled PET fiber on various volume fractions of concrete by 0.5%, 1%, and 1.5% of weight of cement were experimentally investigated. The test specimens comprising of cubes and beams were prepared and tested at 3, 7, 14 and 28 days after curing process completed. Generally, it was found that the workability of concrete reinforced recycled PET has reduced as the volume fraction of PET fiber increased. The compressive strength of concrete reinforced recycled PET has reached the highest value at volume fraction of 0.5%. However, the flexural strength of concrete was significantly increased by incorporating 1.0% of recycled PET fiber. It can be concluded that the concrete which contains 0.5% of recycled PET fiber has the highest of average percentage of relative. Hence, it can be categorized as the optimum percentage of recycled PET fiber to be utilized in concrete. It is recommended to use recycled PET fiber in concrete for the construction of structures and infrastructures as a green construction material in order to achieve clean and sustainable environment in the year future.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


Alloy Digest ◽  
1993 ◽  
Vol 42 (2) ◽  

Abstract Durcomet 100 is an improved version of Alloy CD-4 MCu with better corrosion and wear resistance. The alloy is used in the annealed condition and possesses excellent corrosion resistance over a wide range of corrosion environments. Mechanical strength is also very high. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating and joining. Filing Code: SS-540. Producer or source: Duriron Company Inc.


Author(s):  
Pranav Madhav Kuber ◽  
Ehsan Rashedi

A new forklift backrest has been developed by incorporating adjustability concepts into the design to facilitate comfort to a wide range of users. We have conducted a comparative study between the new and original backrests to assess the effectiveness of design features. Using the phenomenon of restlessness, discomfort of the user was associated with the amount of body movement, where we have used a motion- capture system and a force platform to quantify the individuals’ movement for a wide range of body sizes. Meanwhile, subjective comfort and design feedback were collected using a questionnaire. Our results showed a reduction in the mean torso movement and the maximum center of pressure change of location by 300 and 6 mm, respectively, for the new design. Taking advantage of adjustability feature, the new backrest design exhibited enhanced comfort for longer durations and reduced magnitude of discomfort for a wide range of participants’ body sizes.


Sign in / Sign up

Export Citation Format

Share Document