scholarly journals Composite clustering normal distribution transform algorithm

2020 ◽  
Vol 17 (3) ◽  
pp. 172988142091214
Author(s):  
Tian Liu ◽  
Jiongzhi Zheng ◽  
Zhenting Wang ◽  
Zhengdong Huang ◽  
Yongfu Chen

Scan registration is a fundamental step for the simultaneous localization and mapping of mobile robot. The accuracy of scan registration is critical for the quality of mapping and the accuracy of robot navigation. During all of the scan registration methods, normal distribution transform is an efficient and wild-using one. But normal distribution transform will lead to the unreasonable interruption when splitting the grid and can’t express the points’ local geometric feature by prefixed grid. In this article, we propose a novel method, composite clustering normal distribution transform, which comprises the density-based clustering and k-means clustering to aggregate the points with similar local distributing feature. It takes singular value decomposition to judge the suitable degree of one cluster for further division. Meanwhile, to avoid the radiating phenomenon of LIDAR in measuring the points’ distance, we propose a method based on trigonometric to measure the internal distance. The clustering method in composite clustering normal distribution transform could ensure the expression of LIDAR’s local distribution and matching accuracy. The experimental result demonstrates that our method is more accurate and more stable than the normal distribution transform and iterative closest point methods.

2020 ◽  
Vol 2020 (17) ◽  
pp. 34-1-34-7
Author(s):  
Matthew G. Finley ◽  
Tyler Bell

This paper presents a novel method for accurately encoding 3D range geometry within the color channels of a 2D RGB image that allows the encoding frequency—and therefore the encoding precision—to be uniquely determined for each coordinate. The proposed method can thus be used to balance between encoding precision and file size by encoding geometry along a normal distribution; encoding more precisely where the density of data is high and less precisely where the density is low. Alternative distributions may be followed to produce encodings optimized for specific applications. In general, the nature of the proposed encoding method is such that the precision of each point can be freely controlled or derived from an arbitrary distribution, ideally enabling this method for use within a wide range of applications.


2016 ◽  
Vol 10 (2) ◽  
pp. 119-126
Author(s):  
Mahlinda Mahlinda ◽  
Fitriana Djafar

The main purpose of this research was to observer effect co-solvent type (n-Hexane, chloroform and without co-solvent)  toward yield and quality of biodiesel via in situ transesterification process using microwave irradiation. The process was studied at microwave power 450 watt, reaction time 4 minutes, methanol to seed ratio 25:1 and catalyst concentration 5%. The physicochemical parameters of the biodiesel produced such as viscosity, density and acid value were analysed and compared with the SNI 7182-2012 standard. The experimental result showed the maximum yield biodiesel 78,32% obtained by using co-solvent chloroform.Test result of physicochemical properties (viscosity, density and acid value) of biodiesel products using co solvent n-Hexane, chloroform and without co solvent showed that these products conform to the SNI 7182-2012 standars. The type of co-solvent only affectedon biodiesel yield dan not affected on biodiesel quality (viscosity, density and acid value).  ABSTRAKTujuan penelitian ini adalah untuk mempelajari pengaruh jenis co-solvent (n-Hexane, chloroform dan tanpa co-solvent) terhadap rendemen dan mutu biodiesel secara trasesterifikasi in situ menggunakan radiasi gelombang mikro. Proses dilakukan pada daya gelombang mikro 450 watt, waktu reaksi 4 menit, perbandingan berat metanol terhadap bahan baku 25:1 dan jumlah katalis 5%. Parameter fisiko kimia dari produk biodiesel seperti viskositas, densitas dan angka asam di analisa dan dibandingkan dengan standar SNI 7182-2012 tentang biodiesel. Hasil penelitian menunjukkan rendemen maksimum biodiesel sebesar 78,32% diperoleh dengan menggunakan co-solvent chloroform. Hasil pengujian  karakteristik fisiko kimia (viskositas, densitas dan angka asam) dari produk biodiesel menggunakan co-solvent n-Hexane, chloroform dan tanpa co-solvent menunjukkan bahwa semua parameter ini masih memenuhi standar SNI 1782-2012 tentang biodiesel. Jenis co-solvent hanya berpengaruh pada rendemen biodiesel dan tidak berpengaruh terhadap mutu biodiesel (viskositas, densitas dan bilangan asam).Kata kunci: co-solvent, in situ transesterifikasi, microwave, rendemen, mutu   


At production of fabrics, including fabrics for agricultural purpose, an important role is played by the cor-rect adjustment of operation of machine main regulator. The quality of setup of machine main controller is determined by the proper selection of rotation angle of warp beam weaving per one filling thread. In the pro-cess of using the regulator as a result of mistakes in adjustment, wear of transmission gear and backlashes in connections of details there are random changes in threads length. The purpose of the article is the research of property of random errors of basis giving by STB machine regulator. Mistakes can be both negative, and positive. In case of emergence only negative or only positive mistakes operation of the machine becomes im-possible as there will be a consecutive accumulation of mistakes. As a result of experimental data processing for stable process of weaving and the invariable diameter of basis threads winding of threads it is revealed that the random error of giving is set up as linear function of the accidental length having normal distribution. Measurements of accidental deviations in giving of a basis by the main regulator allowed to construct a curve of normal distribution of its actual length for one pass of weft thread. The presented curve of distribution of random errors in giving of a basis is the displaced curve of normal distribution of the accidental sizes. Also we define the density of probability of normal distribution of basis giving errors connected with a margin er-ror operation of the main regulator knowing of which allows to plan ways of their decrease that is important for improvement of quality of the produced fabrics.


2015 ◽  
Vol 9 (1) ◽  
pp. 553-559
Author(s):  
HU Xin-xin ◽  
Chen Chun-lan

In order to optimize the electric energy quality of HVDC access point, a modular multilevel selective harmonic elimination pulse-width modulation (MSHE-PWM) method is proposed. On the basis of keeping the minimum action frequency of the power device, MSHE-PWM method can meet the requirement for accurately eliminating low-order harmonics in the output PWM waveform. Firstly, establish the basic mathematical model of MMC topology and point out the voltage balance control principle of single modules; then, analyze offline gaining principle and realization way of MSHEPWM switching angle; finally, verify MSHE-PWM control performance on the basis of MMC reactive power compensation experimental prototype. The experimental result shows that the proposed MSHE-PWM method can meet such performance indexes as low switching frequency and no lower-order harmonics, and has verified the feasibility and effectiveness thereof for optimizing the electric energy quality of HVDC access point.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ha Min Son ◽  
Wooho Jeon ◽  
Jinhyun Kim ◽  
Chan Yeong Heo ◽  
Hye Jin Yoon ◽  
...  

AbstractAlthough computer-aided diagnosis (CAD) is used to improve the quality of diagnosis in various medical fields such as mammography and colonography, it is not used in dermatology, where noninvasive screening tests are performed only with the naked eye, and avoidable inaccuracies may exist. This study shows that CAD may also be a viable option in dermatology by presenting a novel method to sequentially combine accurate segmentation and classification models. Given an image of the skin, we decompose the image to normalize and extract high-level features. Using a neural network-based segmentation model to create a segmented map of the image, we then cluster sections of abnormal skin and pass this information to a classification model. We classify each cluster into different common skin diseases using another neural network model. Our segmentation model achieves better performance compared to previous studies, and also achieves a near-perfect sensitivity score in unfavorable conditions. Our classification model is more accurate than a baseline model trained without segmentation, while also being able to classify multiple diseases within a single image. This improved performance may be sufficient to use CAD in the field of dermatology.


Author(s):  
Peter Marvin Müller ◽  
Niklas Kühl ◽  
Martin Siebenborn ◽  
Klaus Deckelnick ◽  
Michael Hinze ◽  
...  

AbstractWe introduce a novel method for the implementation of shape optimization for non-parameterized shapes in fluid dynamics applications, where we propose to use the shape derivative to determine deformation fields with the help of the $$p-$$ p - Laplacian for $$p > 2$$ p > 2 . This approach is closely related to the computation of steepest descent directions of the shape functional in the $$W^{1,\infty }-$$ W 1 , ∞ - topology and refers to the recent publication Deckelnick et al. (A novel $$W^{1,\infty}$$ W 1 , ∞ approach to shape optimisation with Lipschitz domains, 2021), where this idea is proposed. Our approach is demonstrated for shape optimization related to drag-minimal free floating bodies. The method is validated against existing approaches with respect to convergence of the optimization algorithm, the obtained shape, and regarding the quality of the computational grid after large deformations. Our numerical results strongly indicate that shape optimization related to the $$W^{1,\infty }$$ W 1 , ∞ -topology—though numerically more demanding—seems to be superior over the classical approaches invoking Hilbert space methods, concerning the convergence, the obtained shapes and the mesh quality after large deformations, in particular when the optimal shape features sharp corners.


Author(s):  
Mingliang Xu ◽  
Qingfeng Li ◽  
Jianwei Niu ◽  
Hao Su ◽  
Xiting Liu ◽  
...  

Quick response (QR) codes are usually scanned in different environments, so they must be robust to variations in illumination, scale, coverage, and camera angles. Aesthetic QR codes improve the visual quality, but subtle changes in their appearance may cause scanning failure. In this article, a new method to generate scanning-robust aesthetic QR codes is proposed, which is based on a module-based scanning probability estimation model that can effectively balance the tradeoff between visual quality and scanning robustness. Our method locally adjusts the luminance of each module by estimating the probability of successful sampling. The approach adopts the hierarchical, coarse-to-fine strategy to enhance the visual quality of aesthetic QR codes, which sequentially generate the following three codes: a binary aesthetic QR code, a grayscale aesthetic QR code, and the final color aesthetic QR code. Our approach also can be used to create QR codes with different visual styles by adjusting some initialization parameters. User surveys and decoding experiments were adopted for evaluating our method compared with state-of-the-art algorithms, which indicates that the proposed approach has excellent performance in terms of both visual quality and scanning robustness.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1057.2-1057
Author(s):  
Y. Liu ◽  
Y. Huang ◽  
Q. Huang ◽  
S. Sun ◽  
Z. Ji ◽  
...  

Background:Exosomes in synovial fluid (SF) has a close relationship with the pathogenesis of rheumatiod arthritis. As a complex biological fluid, SF presents challenges for exosomes isolation using standard methods, such as ExoquickTM kit and ultracentrifugation.Objectives:The study aims to compared the quality of exosomes separated by ExoquickTM kit (TM), ExoquickTM kit+ExoquickTC kit (TM-TC), ultracentrifugation (UC) and TM-TC+UC(TM-TC-UC) from SF.Methods:Exosomes was separated by TM, TM-TC, UC and TM-TC-UC respectively. The size and concentrations of exosomes were detected by high sensitivity flow cytometry for nanoparticle analysis. Total protein and RNA were extracted from exosomes. SDS-PAGE was used to detect the protein distribution of exosomes. Western blot was used to examine the level of albumin and exosomes marker (TSG101 and CD81).Results:There was no statistic difference in the diameters of exosomes separated by the four methods. The concentrations of exosomes in TM, TM-TC, TM-TC-UC and UC were (5.65±0.93), (3.02±1.19), (1.67±0.25) and (4.61±0.73) *109Particles/mL. The protein concentrations of exosomes separated by the four methods were consistent with the concentrations of exosomes. SDS-PAGE showed that the protein distribution of exosomes separated by the four methods were different. Low levels of albumin were detected in TM-TC and TM-TC-UC, while high levels of albumin in TM and UC. Total RNA concentrations from exosomes in TM-TC was higher than other groups.Conclusion:TM-TC can be used to obtain higher quality exosomes from SF for the study of exosome-enriched components.References:[1]Helwa I, et al, A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents. PloS one, 2017. 12(1): p. e0170628-e0170628.Figure 1.A: SDS-PAGE showed the protein distribution of exosomes; B: the detection of albumin, TSG101 and CD81 by western blot.Disclosure of Interests:None declared


2021 ◽  
Vol 13 (2) ◽  
pp. 320
Author(s):  
José P. Granadeiro ◽  
João Belo ◽  
Mohamed Henriques ◽  
João Catalão ◽  
Teresa Catry

Intertidal areas provide key ecosystem services but are declining worldwide. Digital elevation models (DEMs) are important tools to monitor the evolution of such areas. In this study, we aim at (i) estimating the intertidal topography based on an established pixel-wise algorithm, from Sentinel-2 MultiSpectral Instrument scenes, (ii) implementing a set of procedures to improve the quality of such estimation, and (iii) estimating the exposure period of the intertidal area of the Bijagós Archipelago, Guinea-Bissau. We first propose a four-parameter logistic regression to estimate intertidal topography. Afterwards, we develop a novel method to estimate tide-stage lags in the area covered by a Sentinel-2 scene to correct for geographical bias in topographic estimation resulting from differences in water height within each image. Our method searches for the minimum differences in height estimates obtained from rising and ebbing tides separately, enabling the estimation of cotidal lines. Tidal-stage differences estimated closely matched those published by official authorities. We re-estimated pixel heights from which we produced a model of intertidal exposure period. We obtained a high correlation between predicted and in-situ measurements of exposure period. We highlight the importance of remote sensing to deliver large-scale intertidal DEM and tide-stage data, with relevance for coastal safety, ecology and biodiversity conservation.


2013 ◽  
Vol 762 ◽  
pp. 261-265 ◽  
Author(s):  
Tanya I. Cherkashina ◽  
Igor Mazur ◽  
Sergey A. Aksenov

Numerical and physical simulation on model samples can provide data for various aspects of metal forming, without resorting to time-consuming and costly full-scale tests. This paper presents examples of modeling of the deformation of a slab with a liquid core. The use of soft reduction can enhance the homogeneity of the structure, which improves the quality of cast billets. Mathematical modeling is described here where the fluid layer is taken into account by the influence of boundary conditions in the crust in the form of ferrostatic pressure, which allows calculation of the intensity of deformation, total deformation and strain. It also provides a novel method for studying the process of soft reduction. It is based on a physical model of the slab consisting of a closed solid shell made of a calibrated lead shot and the Wood's alloy. To simulate the liquid molten metal, the interior of the shell is filled with gelatin. This approach can be applied to further studies on deformation processes and the penetration of deformation into complex metallic systems.


Sign in / Sign up

Export Citation Format

Share Document