scholarly journals Myc is a prognostic biomarker and potential therapeutic target in osteosarcoma

2020 ◽  
Vol 12 ◽  
pp. 175883592092205 ◽  
Author(s):  
Wenlong Feng ◽  
Dylan C. Dean ◽  
Francis J. Hornicek ◽  
Dimitrios Spentzos ◽  
Robert M. Hoffman ◽  
...  

Background: Over the past four decades, outcomes for osteosarcoma patients have plateaued as there have been few emerging therapies showing clinical results. Thus, the identification of novel biomarkers and therapeutic strategies are urgently needed to address these primary obstacles in patient care. Although the Myc-oncogene has known roles in oncogenesis and cancer cell growth, its expression and function in osteosarcoma are largely unknown. Methods: Expression of Myc was determined by Western blotting of osteosarcoma cell lines and patient tissues, and by immunohistochemistry of a unique osteosarcoma tissue microarray (TMA) constructed from 70 patient samples with extensive follow-up data. Myc specific siRNA and inhibitor 10058-F4 were applied to examine the effect of Myc inhibition on osteosarcoma cell proliferation. The clonogenicity and migration activity was determined by clonogenic and wound-healing assays. A mimic in vivo assay, three-dimensional (3D) cell culture model, was performed to further validate the effect of Myc inhibition on osteosarcoma cell tumorigenic markers. Results: Myc was significantly overexpressed in human osteosarcoma cell lines compared with normal human osteoblasts, and also highly expressed in fresh osteosarcoma tissues. Higher Myc expression correlated significantly with metastasis and poor prognosis. Through the addition of Myc specific siRNA and inhibitor, we significantly reduced Myc protein expression, resulting in decreased osteosarcoma cell proliferation. Inhibition of Myc also suppressed the migration, clonogenicity, and spheroid growth of osteosarcoma cells. Conclusion: Our results support Myc as an emerging prognostic biomarker and therapeutic target in osteosarcoma therapy.

2021 ◽  
Vol 14 (5) ◽  
pp. 421
Author(s):  
Geoffroy Danieau ◽  
Sarah Morice ◽  
Sarah Renault ◽  
Régis Brion ◽  
Kevin Biteau ◽  
...  

High-grade osteosarcomas are the most frequent malignant bone tumors in the pediatric population, with 150 patients diagnosed every year in France. Osteosarcomas are associated with low survival rates for high risk patients (metastatic and relapsed diseases). Knowing that the canonical Wnt signaling pathway (Wnt/β-catenin) plays a complex but a key role in primary and metastatic development of osteosarcoma, the aim of this work was to analyze the effects of ICG-001, a CBP/β-catenin inhibitor blocking the β-catenin dependent gene transcription, in three human osteosarcoma cell lines (KHOS, MG63 and 143B). The cell proliferation and migration were first evaluated in vitro after ICG-001 treatment. Secondly, a mouse model of osteosarcoma was used to establish the in vivo biological effect of ICG-001 on osteosarcoma growth and metastatic dissemination. In vitro, ICG-001 treatment strongly inhibits osteosarcoma cell proliferation through a cell cycle blockade in the G0/G1 phase, but surprisingly, increases cell migration of the three cell lines. Moreover, ICG-001 does not modulate tumor growth in the osteosarcoma mouse model but, rather significantly increases the metastatic dissemination to lungs. Taken together, these results highlight, despite an anti-proliferative effect, a deleterious pro-migratory role of ICG-001 in osteosarcoma.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 376-376
Author(s):  
Anudishi Tyagi ◽  
Stanley Ly ◽  
Bin Yuan ◽  
Fouad El-Dana ◽  
Appalaraju Jaggupilli ◽  
...  

Abstract Background FMS-like tyrosine kinase 3 (FLT3), a transmembrane receptor tyrosine kinase that is frequently mutated in AML, is associated with poor prognosis. Inhibitors of FLT3 internal tandem duplication (ITD) mutants and wild-type (WT) FLT3 have been studied, but their clinical usefulness is limited owing to treatment resistance. However, the molecular factors contributing to this resistance are unknown. We reported that AML cells induce osteogenic differentiation of bone marrow-derived mesenchymal stromal cells through the bone morphogenetic protein (BMP)-mediated signaling pathway, promoting leukemic growth. However, the effects of targeting BMP signaling in patients with FLT3-mutated AML are unexplored. Here, we hypothesized that the BMP type 1 receptor ALK2 is a key biomarker and a therapeutic target in AML patients with FLT3-ITD mutations and that the FLT3-ALK2 dual inhibitor TP-0184 inhibits leukemia growth. Methods: To determine whether ALK2 is a potential target in AML patients with FLT3-ITD mutations, we analyzed gene expression datasets (OHSU and TCGA). We treated 9 AML cell lines with FLT3-WT or ITD mutations with varying doses of ALK2 inhibitors (LDN-212854 or TP-0184) and measured their effect on cell proliferation and the cell cycle. To determine the mechanism of TP-0184-mediated cell cycle arrest, we measured activation of FLT3 downstream signaling by using Western blotting and RNA sequencing. IncuCyte live-cell imaging was used to determine the apoptotic effects of TP-0184 in combination with chemotherapy or targeted therapy agents. Further, we performed human RTK kinase binding assay to understand the binding specificity of TP-0184 with 11 different FLT3 mutants. Finally, the effect of TP-0184 on AML growth in vivo was investigated using an FLT3-ITD positive AML xenograft model (MOLM13). Results: Analysis of AML datasets showed that ALK2 is significantly upregulated in AML patients with FLT3 mutations compared to those with WT-FLT3 (p < 0.00001) and predicts poor overall survival (p = 0.05). Validating these findings, we found higher ALK2 mRNA expression in AML cell lines with FLT3-ITD mutations than in those with WT-FLT3 (p = 0.039). This suggests that ALK2 could serve as a therapeutic target in AML with FLT3-ITD mutation. Treatment of FLT3-WT and -mutated AML cell lines with the ALK2 inhibitors LDN-212854 and TP-0184 resulted in significant inhibition of FLT3-ITD-mutant cell growth at low concentrations (IC50<25nM), while WT-FLT3 cells were affected only at high concentrations (IC50>100nM). Interestingly, TP-0184 was 10-fold more potent in inhibiting AML cell proliferation than was LDN-212854. TP-0184 induced G1/G0 arrest in AML cell lines with FLT-ITD mutations but had minimal to no effect in FLT3-WT AML cells, suggesting that AML cell lines with FLT3-ITD mutations depend on ALK2 for their survival. Further, we observed that treatment with TP-0184 in AML cell lines significantly inhibited multiple signaling proteins downstream of FLT3, such as p-STAT5, p-MKK3, and p-ERK, as well as p-PI3K, p-AKT, p-mTOR, p-4E-BP1, and p-S6K. Gene expression analysis revealed that treatment with TP-0184 in FLT3-ITD cell lines significantly downregulated the serine biosynthesis pathway, which is essential in these cells (Bjelosevic S. et al., Cancer Discov, 2021). Moreover, molecular docking and kinase-binding studies revealed that TP-0184 is bound to wild-type FLT3 as well as most of the FLT3 mutants with dissociation constants (KD) less than 5nM. These data suggest that TP-0184 inhibits both mutant FLT3 and ALK2 in AML cells. Interestingly, TP-0184 plus chemotherapy showed a synergistic effect only in FLT3-ITD cell lines, whereas TP-0184 plus the BCL2 inhibitor, venetoclax was synergistic in both FLT3-ITD and FLT3-WT cell lines. Lastly, treatment with TP-0184 inhibited AML growth and significantly prolonged survival of FLT3-ITD-mutated AML-bearing mice in a dose-dependent manner (p <0.0001). Conclusion: Our data indicate that ALK2 is a prognostic marker for AML patients with FLT3-ITD mutations. TP-0184 significantly inhibits cell proliferation by inhibiting signaling pathways downstream of FLT3, including serine biosynthesis, in AML cells. Kinase assays confirmed that TP-0184 is a highly specific FLT3 inhibitor as well as an ALK2 inhibitor. TP-0184 sensitizes AML cells to chemotherapeutic agents and targeted therapy and inhibits AML growth in vivo. Disclosures Foulks: Sumitomo Dainippon Pharma Oncology: Patents & Royalties: WO2021102343A1; Sumitomo Dainippon Pharma Oncology: Patents & Royalties: CA3103995A1; Sumitomo Dainippon Pharma Oncology: Patents & Royalties: US11040038B2. Warner: Sumitomo Dainippon Pharma Oncology: Patents & Royalties: US11040038B2; Sumitomo Dainippon Pharma Oncology: Patents & Royalties: US10752594B2; Sumitomo Dainippon Pharma Oncology: Patents & Royalties: CA3103995A1; Sumitomo Dainippon Pharma Oncology: Patents & Royalties: WO2021102343A1. Battula: Tolero Pharmaceuticals: Research Funding.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Biyong Deng ◽  
Runsang Pan ◽  
Xin Ou ◽  
Taizhe Wang ◽  
Weiguo Wang ◽  
...  

Purpose. Osteosarcoma (Os) is the most frequent malignant tumor of the bone in the pediatric age group, and accumulating evidences show that lncRNAs play a key role in the development of Os. Thus, we investigated the role of RBM5-AS1 and its molecular mechanism. Methods. The expression of RBM5-AS1 in Os tissues and cell lines was detected by real-time polymerase chain reaction (QPCR). The effect of RBM5-AS1 on the proliferation of Os cells was detected using CCK8 assays and flow cytometry. The effect of RBM5-AS1 on the migration and invasion of Os cells was detected by transwell assays. And we performed QPCR and western blotting assays to investigate the relationship between RBM5-AS1 and RBM5. Finally, western blotting assays were performed to explore the mechanism of RBM5. Results. LncRNA RBM5-AS1 was overexpressed in the Os tissues and cell lines. And lncRNA RBM5-AS1 promoted Os cell proliferation, migration, and invasion in vitro and tumor growth in vivo. LncRNA RBM5-AS1 targets RBM5 in Os cells. Conclusion. To sum up, the results showed that lncRNA RBM5-AS1 promotes cell proliferation, migration, and invasion in Os.


2021 ◽  
Vol 13 ◽  
pp. 1759720X2199506
Author(s):  
Hangzhan Ma ◽  
Dylan C. Dean ◽  
Ran Wei ◽  
Francis J. Hornicek ◽  
Zhenfeng Duan

Background: Overexpression of cyclin-dependent kinase 7 (CDK7) is a well-known pathogenic feature of various malignancies and a sign of a more dismal prognosis. As relatively little is known about CDK7 in osteosarcoma, we elected to evaluate its expression, prognostic value, and function. Methods: We began by analyzing the publicly available data sets on CDK7 expression, including RNA sequencing data from the Therapeutically Applicable Research to Generate Effective Treatments on Osteosarcoma (TARGET-OS) and the Gene Expression database of Normal and Tumor tissues 2 (GENT2). The correlation between patient tissue CDK7 expression and their clinicopathological features and prognosis was assessed via immunohistochemical staining of a unique tissue microarray constructed from osteosarcoma specimens. Furthermore, we analyzed CDK7 expression in osteosarcoma cell lines and tissues by Western blot. CDK7-specific siRNA and a highly-selective CDK7 inhibitor, BS-181, were applied to determine the function of CDK7 on osteosarcoma cell growth and proliferation. In addition, the effect of CDK7 inhibition on clonogenicity was evaluated using a clonogenic assay, and a 3D cell culture model was used to mimic CDK7 effects in an in vivo environment. Results: Our results demonstrate that higher CDK7 expression significantly correlates with recurrence, metastasis, and shorter overall survival in osteosarcoma patients. Therapeutically, we show that CDK7 knockdown with siRNA or selective inhibition with BS-181 decreases proliferation and induces apoptosis of osteosarcoma cells. Conclusion: This study supports CDK7 overexpression as an independent predictor of poor prognosis and promising therapeutic target for osteosarcoma.


2016 ◽  
Vol 130 (11) ◽  
pp. 921-930 ◽  
Author(s):  
Zhenhua Zhou ◽  
Zhiwei Wang ◽  
Haifeng Wei ◽  
Sujia Wu ◽  
Xudong Wang ◽  
...  

MicroRNAs play important roles in the development of cancers. Although miR-92b has been reported to promote the tumorigenesis of some cancers, its role in osteosarcoma remains unknown. In the present study, we focused on the expression, function and mechanisms of miR-92b in osteosarcoma development. The miRNA miR-92b was up-regulated in osteosarcoma cell lines and tissues; miR-92b up-regulation correlated with poor prognosis in osteosarcoma. Overexpression of miR-92b promoted osteosarcoma cell proliferation, migration and invasion, which was abrogated by miR-92b inhibition. Reversion-inducing, cysteine-rich protein with kazal motifs (RECK) was identified as the direct and functional target of miR-92b in osteosarcoma. Importantly, restoring RECK expression abrogated increases in cell growth, motility and invasiveness induced by miR-92b. RECK was down-regulated in osteosarcoma tissues, and its expression level negatively correlated with miR-92b. Collectively, our results indicate that miR-92b acts as an oncogenic miRNA and may be a therapeutic target in osteosarcoma.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yubao Gong ◽  
Chen Yang ◽  
Zhengren Wei ◽  
Jianguo Liu

Abstract To explore the expression and the functions of SRPK1 in osteosarcoma, we retrieved transcription profiling dataset by array of human bone specimens from patients with osteosarcoma from ArrayExpress (accession E-MEXP-3628) and from Gene Expression Omnibus (accession GSE16102) and analyzed expression level of SRPK1 and prognostic value in human osteosarcoma. Then we examined the effect of differential SRPK1 expression levels on the progression of osteosarcoma, including cell proliferation, cell cycle, apoptosis, and investigated its underlying molecular mechanism using in vitro osteosarcoma cell lines and in vivo nude mouse xenograft models. High expression level of SRPK1 was found in human osteosarcoma tissues and cell lines as compared to the normal bone tissues and osteoblast cells, and predicted poor prognosis of human osteosarcoma. Overexpression of SRPK1 in osteosarcoma U2OS cells led to cell proliferation but inhibition of apoptosis. In contrast, knockdown of SRPK1 in HOS cells impeded cell viability and induction of apoptosis. Moreover, silencing SRPK1 inhibited osteosarcoma tumor growth in nude mice. Mechanistic studies revealed that SRPK1 promoted cell cycle transition in osteosarcoma cells and activation of NF-κB is required for SRPK1 expression and its pro-survival signaling. SRPK1 promoted human osteosarcoma cell proliferation and tumor growth by regulating NF-κB signaling pathway.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zehua Zhang ◽  
Fei Dai ◽  
Fei Luo ◽  
Wenjie Wu ◽  
Shuai Zhang ◽  
...  

AbstractOsteosarcoma is a malignant osteoblastic tumor that can gravely endanger the lives and health of children and adolescents. Therefore, there is an urgent need to explore new biomarkers for osteosarcoma and determine new targeted therapies to improve the efficacy of osteosarcoma treatment. Diaphanous related formin 3 (DIAPH3) promotes tumorigenesis in hepatocellular carcinoma and lung adenocarcinoma, suggesting that DIAPH3 may be a target for tumor therapy. To date, there have been no reports on the function of DIAPH3 in osteosarcoma. DIAPH3 protein expression in osteosarcoma tissues and healthy bone tissues adjacent to cancer cells was examined by immunohistochemical staining. DIAPH3 mRNA expression correlates with overall survival and reduced disease-free survival. DIAPH3 protein is upregulated in osteosarcoma tissues, and its expression is significantly associated with tumor size, tumor stage, node metastasis, and distant metastasis. Functional in vitro experiments revealed that DIAPH3 knockdown suppressed cell proliferation and suppressed cell migration and invasion of osteosarcoma cell lines MG-63 and HOS. Functional experiments demonstrated that DIAPH3 knockdown inhibited subcutaneous tumor growth and lung metastasis in vivo. In conclusion, DIAPH3 expression can predict the clinical outcome of osteosarcoma. In addition, DIAPH3 is involved in the proliferation and metastasis of osteosarcoma, and as such, DIAPH3 may be a potential therapeutic target for osteosarcoma.


Author(s):  
He Zhu ◽  
Hongwei Zhang ◽  
Youliang Pei ◽  
Zhibin Liao ◽  
Furong Liu ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is a common type of malignant human cancer with high morbidity and poor prognosis, causing numerous deaths per year worldwide. Growing evidence has been demonstrated that long non-coding RNAs (lncRNAs) are closely associated with hepatocarcinogenesis and metastasis. However, the roles, functions, and working mechanisms of most lncRNAs in HCC remain poorly defined. Methods Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression level of CCDC183-AS1 in HCC tissues and cell lines. Cell proliferation, migration and invasion ability were evaluated by CCK-8 and transwell assay, respectively. Animal experiments were used to explore the role of CCDC183-AS1 and miR-589-5p in vivo. Bioinformatic analysis, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to confirm the regulatory relationship between CCDC183-AS1, miR-589-5p and SKP1. Results Significantly upregulated expression of CCDC183-AS1 was observed in both HCC tissues and cell lines. HCC patients with higher expression of CCDC183-AS1 had a poorer overall survival rate. Functionally, overexpression of CCDC183-AS1 markedly promoted HCC cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo, whereas the downregulation of CCDC183-AS1 exerted opposite effects. MiR-589-5p inhibitor counteracted the proliferation, migration and invasion inhibitory effects induced by CCDC183-AS1 silencing. Mechanistically, CCDC183-AS1 acted as a ceRNA through sponging miR-589-5p to offset its inhibitory effect on the target gene SKP1, then promoted the tumorigenesis of HCC. Conclusions CCDC183-AS1 functions as an oncogene to promote HCC progression through the CCDC183-AS1/miR-589-5p/SKP1 axis. Our study provided a novel potential therapeutic target for HCC patients.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1870
Author(s):  
Klaudia Skrzypek ◽  
Grażyna Adamek ◽  
Marta Kot ◽  
Bogna Badyra ◽  
Marcin Majka

Rhabdomyosarcoma (RMS), is the most frequent soft tissue tumor in children that originates from disturbances in differentiation process. Mechanisms leading to the development of RMS are still poorly understood. Therefore, by analysis of two RMS RH30 cell line subclones, one subclone PAX7 negative, while the second one PAX7 positive, and comparison with other RMS cell lines we aimed at identifying new mechanisms crucial for RMS progression. RH30 subclones were characterized by the same STR profile, but different morphology, rate of proliferation, migration activity and chemotactic abilities in vitro, as well as differences in tumor morphology and growth in vivo. Our analysis indicated a different level of expression of adhesion molecules (e.g., from VLA and ICAM families), myogenic microRNAs, such as miR-206 and transcription factors, such as MYOD, MYOG, SIX1, and ID. Silencing of PAX7 transcription factor with siRNA confirmed the crucial role of PAX7 transcription factor in proliferation, differentiation and migration of RMS cells. To conclude, our results suggest that tumor cell lines with the same STR profile can produce subclones that differ in many features and indicate crucial roles of PAX7 and ID proteins in the development of RMS.


2020 ◽  
Vol 15 (1) ◽  
pp. 871-883
Author(s):  
Jinshan Zhang ◽  
Dan Rao ◽  
Haibo Ma ◽  
Defeng Kong ◽  
Xiaoming Xu ◽  
...  

AbstractBackgroundOsteosarcoma is a common primary malignant bone cancer. Long noncoding RNA small nucleolar RNA host gene 15 (SNHG15) has been reported to play an oncogenic role in many cancers. Nevertheless, the role of SNHG15 in the doxorubicin (DXR) resistance of osteosarcoma cells has not been fully addressed.MethodsCell Counting Kit-8 assay was conducted to measure the half-maximal inhibitory concentration value of DXR in osteosarcoma cells. Western blotting was carried out to examine the levels of autophagy-related proteins and GDNF family receptor alpha-1 (GFRA1). Quantitative reverse transcription-polymerase chain reaction was performed to determine the levels of SNHG15, miR-381-3p, and GFRA1. The proliferation of osteosarcoma cells was measured by MTT assay. The binding sites between miR-381-3p and SNHG15 or GFRA1 were predicted by Starbase bioinformatics software, and the interaction was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to validate the function of SNHG15 in vivo.ResultsAutophagy inhibitor 3-methyladenine sensitized DXR-resistant osteosarcoma cell lines to DXR. SNHG15 was upregulated in DXR-resistant osteosarcoma tissues and cell lines. SNHG15 knockdown inhibited the proliferation, DXR resistance, and autophagy of osteosarcoma cells. MiR-381-3p was a direct target of SNHG15, and GFRA1 bound to miR-381-3p in osteosarcoma cells. SNHG15 contributed to DXR resistance through the miR-381-3p/GFRA1 axis in vitro. SNHG15 depletion contributed to the inhibitory effect of DXR on osteosarcoma tumor growth through the miR-381-3p/GFRA1 axis in vivo.ConclusionsSNHG15 enhanced the DXR resistance of osteosarcoma cells through elevating the autophagy via targeting the miR-381-3p/GFRA1 axis. Restoration of miR-381-3p expression might be an underlying therapeutic strategy to overcome the DXR resistance of osteosarcoma.


Sign in / Sign up

Export Citation Format

Share Document