scholarly journals Gelactin-9 Mediates the Therapeutic Effect of Mesenchymal Stem Cells on Experimental Endotoxemia

2020 ◽  
Author(s):  
Yiming Zhao ◽  
Dingding Yu ◽  
Hongda Wang ◽  
Wang Jin ◽  
Xiang Li ◽  
...  

Abstract Background: Endotoxemia, mediated by uncontrolled immunocytes activation toward Lipopolysaccharide, could deteriorate into severe septic shock, but with limited treatment effect. Mesenchymal stem cells (MSCs), with excellent immune regulatory capacities, have displayed potential in multiple inflammatory disease treatment. Gelactin-9 (Gal-9), a newly discovered immune checkpoint, has been demonstrated to mediate immunomodulatory effect of MSCs in vitro. However, its in vivo role in alleviating endotoxemia remains to be elucidated.Methods: MSCs (2.5×10⁵/ml) were obtained and stimulated with IFN-γ (20ng/ml) for 72 hours. Gal-9 expression on MSCs were measured by ELISA, RT-PCR, flow cytometry and immunofluorescence respectively. Then, experimental endotoxemia was induced by LPS injection (10mg/kg, i.p.), followed by the treatment with Gal-9-MSC (20ng/ml, 72 hours), MSCs and MSC+α-lactose (10.8mg/mL, 500ul, i.v.). Therapeutic effects of MSC-based treatments were assessed by monitoring murine sepsis score, survival rate, splenocyte proportion, phenotype polarization, inflammatory mediator levels and pathological manifestations. Furthermore, Gal-9 expression in multiple organs was also detected after administering the treatments.Results: It has been found that MSCs expressed Gal-9 and its level was increased in a dose-dependent manner after being stimulated by IFN-γ. Moreover, adoptive transferred of IFN-γ pre-stimulated MSCs into endotoxemia mice was found with relieved symptoms and increased survival rate. Flow cytometry analysis indicated that Gal-9-MSC could promote macrophage polarization to M2-subtype and increase Treg ratios in spleen. Further results also demonstrated that, Gal-9-mediated MSC therapy could assist in attenuating local and circulating pro-inflammatory mediators expression (TNF-α, IL-1β, IFN-γ and iNOS), but increasing anti-inflammatory mediators expression (T-SOD and IL-35). Additionally, after administrating Gal-9-MSC, it was also found there was a significant relief in pathological manifestations, and with a higher expression of Gal-9 in liver, kidney and lung homogenate.Conclusions: This study revealed that Gal-9 mediated therapeutic effects of MSCs in alleviating endotoxemia injury, which provides a novel idea for supplementing the research of MSC immunoregulatory mechanism, and offers an excellent candidate to be used in treatment of endotoxemia in the clinical settings.

2020 ◽  
Vol 11 (2) ◽  
pp. 148-155
Author(s):  
Pinjari Hameeda ◽  
Sandeep Katti ◽  
Rajkishore Jammalamadugu ◽  
Kishore Bhatt ◽  
Malleswara Rao Peram ◽  
...  

Aim: To evaluate and compare the effect of curcumin (CUR) and Nano-curcumin (N-CUR) on human-derived mesenchymal stem cells (MSCs) in a dose-dependent manner. Materials and Methods: An experimental study performed with putative MSCs from a total of five systemically healthy subjects with chronic periodontitis. These putative MSCs were isolated by cell culture and were further characterized and identified by colony-forming unit assay and immunocytochemical analysis using cell surface markers CD105, CD146, CD45 and CD73. The identified MSCs were treated with different doses of CUR and N-CUR, and compared with α-minimum essential medium (α -MEM) for its cell viability by performing MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay for 48 and 72 hr. The statistically analysis was performed using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test and Bonferroni’s post hoc test. Results: Compared to the α-MEM group, both CUR and N-CUR treated cells have shown significantly ( P = .029) higher survival rate at lower concentration (0.1 and 0.5 µM/L), at 48 hr incubation. However, there was no statistically significant difference between the CUR and N-CUR groups on cell survival rate at both 48 and 72 hr incubation. When compared between the concentrations of the same group, significantly higher cell viability ( P = .001) was observed at lower concentrations (0.1, 0.5 µM/L) in both test groups after incubation for 48 and 72 hr. Conclusion: Both CUR and N-CUR have a dose-dependent effect on human derived MSCs survival when incubated for 48 hr, whereas N-CUR shows increased cell survival rate even at 72 hr of incubation. Although, the cautious use of CUR and N-CUR at higher concentrations is recommended.


2016 ◽  
Vol 150 (4) ◽  
pp. S359
Author(s):  
Angelos Oikonomopoulos ◽  
Tamera Tomakili ◽  
Precious Lacey ◽  
Dimitrios Iliopoulos ◽  
Daniel Hommes

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Hang Zhao ◽  
Zhiying He ◽  
Dandan Huang ◽  
Jun Gao ◽  
Yanfang Gong ◽  
...  

Background & Aims. Severe acute pancreatitis (SAP) remains a high-mortality disease. Bone marrow (BM) mesenchymal stem cells (MSCs) have been demonstrated to have plasticity of transdifferentiation and to have immunomodulatory functions. In the present study, we assessed the roles of MSCs in SAP and the therapeutic effects of MSC on SAP after transplantation.Methods. A pancreatitis rat model was induced by the injection of taurocholic acid (TCA) into the pancreatic duct. After isolation and characterization of MSC from BM, MSC transplantation was conducted 24 hrs after SAP induction by tail vein injection. The survival rate was observed and MSCs were traced after transplantation. The expression of TNF-αand IL-1βmRNA in the transplantation group was also analyzed.Results. The survival rate of the transplantation group was significantly higher compared to the control group (p<0.05). Infused MSCs were detected in the pancreas and BM 3 days after transplantation. The expression of TNF-αand IL-1βmRNA in the transplantation group was significantly lower than in the control group in both the pancreas and the lungs (p<0.05).Conclusions. MSC transplantation could improve the prognosis of SAP rats. Engrafted MSCs have the capacity of homing, migration, and planting during the treatment of SAP.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Lukun Zhou ◽  
Shuang Liu ◽  
Zhao Wang ◽  
Jianfeng Yao ◽  
Wenbin Cao ◽  
...  

Abstract Background Liver injury associated with acute graft-versus-host disease (aGVHD) is a frequent and severe complication of hematopoietic stem cell transplantation and remains a major cause of transplant-related mortality. Bone marrow-derived mesenchymal stem cells (BM-MSCs) has been proposed as a potential therapeutic approach for aGVHD. However, the therapeutic effects are not always achieved. In this study, we genetically engineered C57BL/6 mouse BM-MSCs with AKT1 gene and tested whether AKT1-MSCs was superior to control MSCs (Null-MSCs) for cell therapy of liver aGVHD. Results In vitro apoptosis analyses showed that, under both routine culture condition and high concentration interferon-γ (IFN-γ) (100ng/mL) stimulation condition, AKT1-MSCs had a survival (anti-apoptotic) advantage compared to Null-MSCs. In vivo imaging showed that AKT1-MSCs had better homing capacity and longer persistence in injured liver compared to Null-MSCs. Most importantly, AKT1-MSCs demonstrated an enhanced immunomodulatory function by releasing more immunosuppressive cytokines, such as IL-10. Adoptive transfer of AKT1-MSCs mitigated the histopathological abnormalities of concanavalin A(ConA)-induced liver injury along with significantly lowered serum levels of ALT and AST. The attenuation of liver injury correlated with the decrease of TNF-α and IFN-γ both in liver tissue and in the serum. Conclusions In summary, BM-MSCs genetically modified with AKT1 has a survival advantage and an enhanced immunomodulatory function both in vitro and in vivo and thus demonstrates the therapeutic potential for prevention and amelioration of liver GVHD and other immunity-associated liver injuries.


2020 ◽  
Vol 21 (12) ◽  
pp. 4409 ◽  
Author(s):  
Kang-Ju Chou ◽  
Chih-Yang Hsu ◽  
Chien-Wei Huang ◽  
Hsin-Yu Chen ◽  
Shih-Hsiang Ou ◽  
...  

We intended to explore the cellular interaction between mesenchymal stem cells (MSCs) and injured endothelial cells leading to macrophage alternative polarization in healing kidney ischemic reperfusion injury. In vivo, the amounts of recruited macrophages were significantly mitigated by MSCs in the injured tissues, especially in the group using hematopoietic cell E- and L-selectin ligand (HCELL)-positive MSCs. Compared to controls, MSCs also enhanced expression of CD206 and CD163, which was further enhanced by HCELL expression. In vitro, analysis of cytokines involving macrophage polarization showed IL-13 rather than IL-4 from MSCs agreed with expression of macrophage CD206 in the presence of hypoxic endothelial cells. Among them, HCELL-positive MSCs in contact with hypoxic endothelial cells produced the greatest response, which were reduced without HCELL or using a transwell to prevent cell contact. With blockade of the respective cytokine, downregulated MSCs secretion of IL-13 and CD206 expression were observed using inhibitors of IFN-γ and TNF-α, but not using those of TGF-β and NO. With IFN-γ and TNF-α, MSCs IL-13 secretion and CD206 expression were upregulated. In conclusion, hypoxia induces endothelial cells producing multiple cytokines. Among them, IFN-γ and TNF-α that stimulate MSCs to secrete IL-13 but not IL-4, leading to alternative polarization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nan An ◽  
Jiaxu Yang ◽  
Hequn Wang ◽  
Shengfeng Sun ◽  
Hao Wu ◽  
...  

AbstractTreatment and rehabilitation of spinal cord injury (SCI) is a major problem in clinical medicine. Modern medicine has achieved minimal progress in improving the functions of injured nerves in patients with SCI, mainly due to the complex pathophysiological changes that present after injury. Inflammatory reactions occurring after SCI are related to various functions of immune cells over time at different injury sites. Macrophages are important mediators of inflammatory reactions and are divided into two different subtypes (M1 and M2), which play important roles at different times after SCI. Mesenchymal stem cells (MSCs) are characterized by multi-differentiation and immunoregulatory potentials, and different treatments can have different effects on macrophage polarization. MSC transplantation has become a promising method for eliminating nerve injury caused by SCI and can help repair injured nerve tissues. Therapeutic effects are related to the induced formation of specific immune microenvironments, caused by influencing macrophage polarization, controlling the consequences of secondary injury after SCI, and assisting with function recovery. Herein, we review the mechanisms whereby MSCs affect macrophage-induced specific immune microenvironments, and discuss potential avenues of investigation for improving SCI treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryo Kanai ◽  
Ayumu Nakashima ◽  
Shigehiro Doi ◽  
Tomoe Kimura ◽  
Ken Yoshida ◽  
...  

AbstractMesenchymal stem cells (MSCs) administered for therapeutic purposes can be activated by interferon-γ (IFN-γ) secreted from natural killer cells in injured tissues and exert anti-inflammatory effects. These processes require a substantial period of time, leading to a delayed onset of MSCs’ therapeutic effects. In this study, we investigated whether pretreatment with IFN-γ could potentiate the anti-fibrotic ability of MSCs in rats with ischemia–reperfusion injury (IRI) and unilateral ureter obstruction. Administration of MSCs treated with IFN-γ strongly reduced infiltration of inflammatory cells and ameliorated interstitial fibrosis compared with control MSCs without IFN-γ treatment. In addition, conditioned medium obtained from IFN-γ-treated MSCs decreased fibrotic changes in cultured cells induced by transforming growth factor-β1 more efficiently than that from control MSCs. Most notably, secretion of prostaglandin E2 from MSCs was significantly increased by treatment with IFN-γ. Increased prostaglandin E2 in conditioned medium obtained from IFN-γ-treated MSCs induced polarization of immunosuppressive CD163 and CD206-positive macrophages. In addition, knockdown of prostaglandin E synthase weakened the anti-fibrotic effects of MSCs treated with IFN-γ in IRI rats, suggesting the involvement of prostaglandin E2 in the beneficial effects of IFN-γ. Administration of MSCs treated with IFN-γ might represent a promising therapy to prevent the progression of renal fibrosis.


2021 ◽  
Author(s):  
Pengdong Li ◽  
Shuang Lv ◽  
Wenyue Jiang ◽  
Lihui Si ◽  
Baojian Liao ◽  
...  

Abstract BackgroundOsteoarthritis (OA) is one of the most common joint diseases and a major public health concern. Current therapies for OA can relieve symptoms but offer no potential for cartilage regeneration. Mesenchymal stem cells (MSCs) have been widely used for the treatment of OA owing to their paracrine secretion of trophic factors, a phenomenon in which exosomes may play a major role. Here, we investigated the potential of exosomes from human umbilical cord-derived MSCs (hUC-MSCs-Exos) at alleviating OA.MethodshUC-MSCs were isolated, cultured, and identified based on the expression of MSC markers and multipotency differentiation. hUC-MSCs-Exos were harvested from hUC-MSC conditioned medium using a sequential centrifugation method. Transmission electron microscopy, dynamic light scattering, flow cytometry, and western blotting were used to identify the exosomes. The effects of hUC-MSCs-Exos on the proliferation and migration of human chondrocytes were evaluated using the cell counting kit-8, EdU-555 cell proliferation kit, and transwell assays. Annexin V-FITC/PI staining and flow cytometry were used to evaluate the effect of exosomes on chondrocyte apoptosis. An in vitro model of human articular chondrocytes treated with interleukin 1 beta (IL-1β) was used to evaluate the effects of exosomes; analyses involved using quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence, and western blotting. The role of exosomes in macrophage polarization was examined in the monocyte cell line, THP-1. Rats with surgically induced OA (ACLT+pMMx method) were intra-articularly injected with hUC-MSCs-Exos. The efficacy of exosome injections was assessed using hematoxylin and eosin and safranin-O and fast green staining, and immunohistochemistry.ResultsWe confirmed the superior efficacy of hUC-MSCs-Exos at promoting chondrocyte proliferation and migration and inhibiting chondrocyte apoptosis. Additionally, hUC-MSCs-Exos reversed IL-1β-induced injury in vitro. hUC-MSCs-Exos could inhibit the secretion of pro-inflammatory factors, promote the expression of anti-inflammatory factors, and regulate the polarization of macrophages. hUC-MSCs-Exos attenuated the progression of OA and prevented severe damage to the knee articular cartilage in the rat OA model. ConclusionshUC-MSCs-Exos exerted immunomodulatory and therapeutic effects in a rat model of OA. These exosomes derived from hUC-MSCs can potentially serve as treatments for OA.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2311-2311
Author(s):  
Karin Tarte ◽  
Delphine Monnier ◽  
Patricia Ame-Thomas ◽  
Joelle Dulong ◽  
Céline Bonnaventure ◽  
...  

Abstract In addition to their extensive proliferation and differentiation potential, adult bone-marrow derived mesenchymal stem cells (MSC) have been recently demonstrated to display non-HLA restricted immunosuppressive capacities in vitro. Accordingly, preliminary clinical trials have begun using MSC for prevention or treatment of acute graft-versus-host disease (GVHD) in allogeneic hematopoietic stem cell transplantation setting. However, very few conclusive data are currently available concerning i) the mechanisms of MSC-mediated immunomodulation, ii) the migration and engraftment of infused MSC, and iii) the influence of cellular environment and soluble factors on their outcome and immunological properties, especially in the context of GVHD-associated inflammation. Using a specific inhibitor of indoleamine 2,3-dioxygenase (IDO), we first confirmed the major implication of this enzyme in the MSC-dependent inhibition of PBMC and purified T cell alloantigen-induced proliferation. Such results were extended to clinical-grade MSC generated in a large scale closed culture system in the presence of clinical-grade fetal calf serum and basic fibroblast growth factor. In addition, MSC exerted the same dose-response anti-proliferative effect either they were third-party or autologous to MLR-responder cells and irradiated or non-irradiated. We could not point out in this system a role for PGE2, despite the use of two well-known inhibitors, or for membrane and soluble HLA-G molecules. Moreover, we shown that IFN-γ was sufficient to trigger, in a dose-dependent manner, the simultaneous induction of IDO expression, at the mRNA and protein levels, and IDO activity, evaluated through the measurement of tryptophan/kynurenine ratio by HPLC. On the contrary, purified peripheral blood monocytes constitutively expressed an inactive form of IDO, and IFN-γ operated only at posttranscriptionnal level in these cells. Antagonist anti-IFN-γ MoAb blocked the induction of IDO activity induced on MSC by allogeneic MLR supernatant, suggesting that IFN-γ is absolutely required for induction of IDO in MSC during immune response. TNF-α and LPS also modulated MSC immune functions through induction of a complex set of genes, such as those coding for CXCL9, CXCL10, and CCL5 inflammatory chemokines involved in GVHD. However, they could not induce IDO activity. CD40 marker was always detected at the beginning of clinical-grade MSC culture. It was lost after several passages but remained inducible by IFN-γ and TNF-α. Treatment of MSC by trimeric CD40L induced expression of several genes involved in immune reaction, such as BAFF, but not CD80 and CD86 costimulatory molecules or IDO. In conclusion, IDO is an essential factor for immunosuppressive properties of clinical-grade MSC. Inflammatory cytokines, LPS, and contact with activated CD40Lpos T cells could markedly alter immunological properties of MSC. Such modifications must be taken into account for their further use as immunomodulator treatments in GVHD context.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Miyeon Kim ◽  
Ji Hye Kwon ◽  
Yun Kyung Bae ◽  
Gee-Hye Kim ◽  
Soyoun Um ◽  
...  

Therapeutic treatment of various inflammation-related diseases using mesenchymal stem cells (MSCs) has increased in recent years because of the paracrine action of these cells but shows several limitations. First, MSC-based therapies exhibit varying efficacies; thus, biomarkers should be determined to identify who may benefit from these candidate therapeutic agents. Second, the mechanism underlying the therapeutic effects is poorly understood. To evaluate the effects of human umbilical cord blood-derived MSCs (UCB-MSCs) on macrophages, the macrophage cell line NR8383 stimulated with lipopolysaccharide (LPS) was cocultured by UCB-MSCs. We found that UCB-MSCs mediated changes in macrophage polarization towards M2 from M1 macrophages. To identify the paracrine action underlying the anti-inflammation effect of UCB-MSCs, the secretion of UCB-MSCs exposed to LPS-stimulated NR8383 cells was tested using a biotin label-based 507 antibody array. Among the secreted proteins, we selected pentraxin-related protein PTX3/tumor necrosis factor-inducible gene 14 protein (PTX3) to investigate its association with UCB-MSCs in macrophage polarization. We found that human PTX3 was secreted from UCB-MSCs under inflammation condition and reinforced the M2 macrophage marker via the Dectin-1 receptor by activating MSK1/2 phosphorylation signaling in NR8383 cells. Accordingly, knockdown of PTX3 in UCB-MSCs significantly attenuated their therapeutic effects in a neonatal hyperoxic lung injury resulting in reduced survival, lung alveolarization, M2 marker expression, Dectin-1 levels, anti-inflammatory cytokines, and improved M1 marker expression and inflammatory cytokines compared to control MSC-injected rats. UCB-MSCs show therapeutic potential by controlling macrophage polarization. Interestingly, higher PTX3 levels in UCB-MSCs induced greater improvement in the therapeutic effects than lower PTX3 levels. Collectively, PTX3 is a potential marker with critical paracrine effects for predicting the therapeutic potential of MSC therapy in inflammatory diseases; quality control assessments using PTX3 may be useful for improving the therapeutic effects of UCB-MSCs.


Sign in / Sign up

Export Citation Format

Share Document