scholarly journals Online visual monitoring and ultrasonic feedback detection in the ultrasonic precision bonding of polymers

2020 ◽  
Vol 29 ◽  
pp. 2633366X2093258
Author(s):  
Yibo Sun ◽  
Yuqi Feng ◽  
Pengfei Hu ◽  
Xing Zhao ◽  
Xinhua Yang ◽  
...  

Ultrasonic bonding is a convenient bonding technology, which features sufficient cleanliness, high efficiency, no need for additional bonding aids, and other outstanding advantages. In recent years, it has been introduced into the field of the micro–nano assembly of polymer micro–nano devices, but it is still difficult for current ultrasonic bonding technology to meet the accuracy requirements of the micro–nano assembly. To improve the control accuracy of the hot-melt interface in the process of ultrasonic bonding, an online hot-melt interface monitoring method and an online ultrasonic transmission efficiency detection method are proposed in this article. With these detection methods, the real-time monitoring of the hot-melt interface can be realized on the basis of machine vision, while high-frequency dynamic force sensors can be used to detect the ultrasonic vibration transmitted from the ultrasonic horn to the anvil. Based on these methods, a functional anvil based on visual monitoring and ultrasonic detection is developed, the finite element method has been used to analyze the transmission characteristics of ultrasonic vibration, and experiments are carried out regarding online detection in the process of ultrasonic bonding. The results show that this system can realize the online detection of the hot-melt interface and ultrasonic transmission information, providing a new control method for ultrasonic bonding technology.

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2538
Author(s):  
Shuang Zhang ◽  
Feng Liu ◽  
Yuang Huang ◽  
Xuedong Meng

The direct-sequence spread-spectrum (DSSS) technique has been widely used in wireless secure communications. In this technique, the baseband signal is spread over a wider bandwidth using pseudo-random sequences to avoid interference or interception. In this paper, the authors propose methods to adaptively detect the DSSS signals based on knowledge-enhanced compressive measurements and artificial neural networks. Compared with the conventional non-compressive detection system, the compressive detection framework can achieve a reasonable balance between detection performance and sampling hardware cost. In contrast to the existing compressive sampling techniques, the proposed methods are shown to enable adaptive measurement kernel design with high efficiency. Through the theoretical analysis and the simulation results, the proposed adaptive compressive detection methods are also demonstrated to provide significantly enhanced detection performance efficiently, compared to their counterpart with the conventional random measurement kernels.


2016 ◽  
Vol 43 (5) ◽  
pp. 369 ◽  
Author(s):  
C. E. Dexter ◽  
R. G. Appleby ◽  
J. P. Edgar ◽  
J. Scott ◽  
D. N. Jones

Context Vehicle-strike has been identified as a key threatening process for koala (Phascolarctos cinereus) survival and persistence in Australia. Roads and traffic act as barriers to koala movement and can impact dispersal and metapopulation dynamics. Given the high cost of wildlife mitigation structures such as purpose-built fauna-specific underpasses or overpasses (eco-passages), road construction and management agencies are constantly seeking cost-effective strategies that facilitate safe passage for fauna across roads. Here we report on an array of detection methods trialled to verify use of retrofitted road infrastructure (existing water culverts or bridge underpasses) by individual koalas in fragmented urban landscapes in south-east Queensland. Aims The study examined whether the retrofitting of existing road structures at six sites facilitated safe passage for koalas across roads. Our primary objective was to record utilisation of retrofitted infrastructure at the level of the individual. Methods We used a combination of existing monitoring methods such as GPS/VHF collars, camera traps, sand plots, and RFID tags, along with a newly developed animal-borne wireless identification (WID) tag and datalogging system, specifically designed for this project, to realise the study aims. Key results We were able to verify 130 crossings by koalas involving a retrofitted structure or a road surface over a 30-month period by using correlated data from complementary methods. We noted that crossings were generally uncommon and mostly undertaken by only a subset of our tagged individuals at each site (21% overall). Conclusions An important element of this study was that crossing events could be accurately determined at the level of the individual. This allowed for detailed assessment of eco-passage usage, rather than the more usual approach of simply recording species’ presence. Implications This study underscores the value of identifying the constraints of each individual monitoring method in relation to site conditions. It also highlights the benefits of contingency planning to limit data loss (i.e. using more than one method to collect data). We suggest an approach that uses complementary monitoring methods has significant advantages for researchers, particularly with reference to improving understanding of whether eco-passages are meeting their prescribed conservation goals.


2020 ◽  
Vol 39 (1) ◽  
pp. 653-662
Author(s):  
Zhou Wang ◽  
Qing Liu ◽  
Haitao Liu ◽  
Shizhong Wei

AbstractThe precise prediction of end-point carbon content in liquid steel plays a critical role in increasing productivity as well as energy efficiency that can be achieved in the basic oxygen furnace (BOF) steelmaking process. Due to numerous and diversity of the studies on BOF end-point carbon prediction, it seems necessary to provide a comprehensive literature review on state-of-the-art developments in end-point carbon prediction for BOF steelmaking. This paper presents the characteristics of different end-point carbon prediction models. The end-point carbon prediction for BOF steelmaking has initially relied on the experience and skill of the operators. With the development of information technology and auto-detection methods, BOF end-point carbon prediction mainly has gone through three stages, such as static prediction, dynamic prediction, and intelligent prediction. Future contributions to the development and application of intelligent end-point carbon prediction in BOF steelmaking are still arduous tasks. However, it is envisaged that the intelligent end-point carbon prediction will witness more frequent applications and greatly improve the high-quality, high-efficiency, and stable production for BOF steelmaking in the future.


Author(s):  
Fuda Ning ◽  
Yingbin Hu ◽  
Zhichao Liu ◽  
Xinlin Wang ◽  
Yuzhou Li ◽  
...  

Laser engineered net shaping (LENS) has become a promising technology in direct manufacturing or repairing of high-performance metal parts. Investigations on LENS manufacturing of Inconel 718 (IN718) parts have been conducted for potential applications in the aircraft turbine component manufacturing or repairing. Fabrication defects, such as pores and heterogeneous microstructures, are inevitably induced in the parts, affecting part qualities and mechanical properties. Therefore, it is necessary to investigate a high-efficiency LENS process for the high-quality IN718 part fabrication. Ultrasonic vibration has been implemented into various melting material solidification processes for part performance improvements. However, there is a lack of studies on the utilization of ultrasonic vibration in LENS process for IN718 part manufacturing. In this paper, ultrasonic vibration-assisted (UV-A) LENS process is, thus, proposed to fabricate IN718 parts for the potential reduction of fabrication defects. Experimental investigations are conducted to study the effects of ultrasonic vibration on microstructures and mechanical properties of LENS-fabricated parts under two levels of laser power. The results showed that ultrasonic vibration could reduce the mean porosity to 0.1%, refine the microstructure with an average grain size of 5 μm, and fragment the detrimental Laves precipitated phase into small particles in a uniform distribution, thus enhancing yield strength, ultimate tensile strength (UTS), microhardness, and wear resistance of the fabricated IN718 parts.


Author(s):  
Xingqiao Liu ◽  
Jun Xuan ◽  
Fida Hussain ◽  
Chen Chong ◽  
Pengyu Li

Background: A smart monitoring system is essential to improve the quality of pig farming. A real-time monitoring system provides growth, health and food information of pigs while the manual monitoring method is inefficient and produces stress on pigs, and the direct contact between human and pig body increases diseases. Methods: In this paper, an ARM-based embedded platform and image recognition algorithms are proposed to monitor the abnormality of pigs. The proposed approach provides complete information on in-house pigs throughout the day such as eating, drinking, and excretion behaviors. The system records in detail each pig's time to eat and drink, and the amount of food and water intake. Results: The experimental results show that the accuracy of the proposed method is about 85%, and the effect of the technique has a significant advantage over traditional behavior detection methods. Conclusion: Therefore, the ARM-based behavior recognition algorithm has certain reference significance for the fine group aquaculture industry. The proposed approach can be used for a central monitoring system.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1918
Author(s):  
Dongpo Wang ◽  
Shouxiang Lu ◽  
Dong Xu ◽  
Yuanlin Zhang

C/SiC composites are the preferred materials for hot-end structures and other important components of aerospace vehicles. It is important to reveal the material removal mechanism of ultrasound vibration-assisted grinding for realizing low damage and high efficiency processing of C/SiC composites. In this paper, a single abrasive particle ultrasound vibration cutting test was carried out. The failure modes of SiC matrix and carbon fiber under ordinary cutting and ultrasound cutting conditions were observed and analyzed. With the help of ultrasonic energy, compared with ordinary cutting, under the conditions of ultrasonic vibration-assisted grinding, the grinding force is reduced to varying degrees, and the maximum reduction ratio reaches about 60%, which means that ultrasonic vibration is beneficial to reduce the grinding force. With the observation of cutting debris, it is found that the size of debris is not much affected by the a p with ultrasound vibration. Thus, the ultrasound vibration-assisted grinding method is an effective method to achieve low damage and high efficiency processing of C/SiC composites.


Author(s):  
D Pullar ◽  
C.A Collins

The accurate detection of oestrus in beef and dairy cows prior to AI or embryo transfer (ET) is essential if optimal pregnancy rates are to be acheived. In dairy cows under normal husbandry conditions only 55% of normally cycling animals are correctly detected in oestrus and inseminated at the appropriate time (Esslemont and Bryant 1976). The use of pedometers, changes in milk yield, milk progesterone and trained sniffer dogs are all methods which can significantly improve the oestrus detection and hence pregnancy rates acheived by AI (Phillips and Schofield, 1988: McLeod, Foulkes, Williams and Weller, 1991; Jezierski, 1988) . However, oestrus detection by visual monitoring is still the most widely used method of detection.To ensure high pregnancy rates from AI or ET when visual oestrus detection methods are used the form and range of behaviours which cattle perform needs to be understood. There are a wide range of oestrus behaviour patterns displayed both within and between individual cows so deciding on the correct time for AI or ET depends on interpreting the available evidence. This paper reports the behaviour of maiden heifers during natural oestrus and following a pharmacologically induced oestrus (designed to synchronise the time of oestrus for a number of heifers). By understanding the range of oestrus behaviour patterns guidelines can be established for observation methods and the interpretation of oestrus behaviour. This should enable the prediction of the optimum times for AI or ET. A corresponding improvement in the number of pregnancies should be acheived.


Toxins ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 1 ◽  
Author(s):  
Wei Ye ◽  
Taomei Liu ◽  
Weimin Zhang ◽  
Muzi Zhu ◽  
Zhaoming Liu ◽  
...  

Marine toxins cause great harm to human health through seafood, therefore, it is urgent to exploit new marine toxins detection methods with the merits of high sensitivity and specificity, low detection limit, convenience, and high efficiency. Aptasensors have emerged to replace classical detection methods for marine toxins detection. The rapid development of molecular biological approaches, sequencing technology, material science, electronics and chemical science boost the preparation and application of aptasensors. Taken together, the aptamer-based biosensors would be the best candidate for detection of the marine toxins with the merits of high sensitivity and specificity, convenience, time-saving, relatively low cost, extremely low detection limit, and high throughput, which have reduced the detection limit of marine toxins from nM to fM. This article reviews the detection of marine toxins by aptamer-based biosensors, as well as the selection approach for the systematic evolution of ligands by exponential enrichment (SELEX), the aptamer sequences. Moreover, the newest aptasensors and the future prospective are also discussed, which would provide thereotical basis for the future development of marine toxins detection by aptasensors.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2322 ◽  
Author(s):  
Wen Zhao ◽  
Mitsuhiro Kamezaki ◽  
Kento Yoshida ◽  
Kaoru Yamaguchi ◽  
Minoru Konno ◽  
...  

The gas pipeline requires regular inspection since the leakage brings damage to the stable gas supply. Compared to current detection methods such as destructive inspection, using pipeline robots has advantages including low cost and high efficiency. However, they have a limited inspection range in the complex pipe owing to restrictions by the cable friction or wireless signal attenuation. In our former study, to extend the inspection range, we proposed a robot chain system based on wireless relay communication (WRC). However, some drawbacks still remain such as imprecision of evaluation based on received signal strength indication (RSSI), large data error ratio, and loss of signals. In this article, we thus propose a new approach based on visible light relay communication (VLRC) and illuminance assessment. This method enables robots to communicate by the ‘light signal relay’, which has advantages in good communication quality, less attenuation, and high precision in the pipe. To ensure the stability of VLRC, the illuminance-based evaluation method is adopted due to higher stability than the wireless-based approach. As a preliminary evaluation, several tests about signal waveform, communication quality, and coordinated movement were conducted. The results indicate that the proposed system can extend the inspection range with less data error ratio and more stable communication.


Sign in / Sign up

Export Citation Format

Share Document