Comparison of macroseismic-intensity scales by considering empirical observations of structural seismic damage

2020 ◽  
pp. 875529302094417
Author(s):  
Siqi Li ◽  
Yongsheng Chen ◽  
Tianlai Yu

In practice, seismic intensity is evaluated in accordance with a macroseismic-intensity scale recognized in the field of seismic engineering globally. The application of different seismic-intensity scales to evaluate the seismic damage of a specific structure due to an earthquake yields diverse results. On this basis, this study compared a few extensively used macroseismic-intensity scales. The results can be used as a reference to develop an international intensity scale. According to empirical structural-damage survey data from the Wenchuan earthquake (Mw = 8.0) that occurred on 12 May 2008 in China, the European Macroseismic Scale (EMS)-98, Medvedev, Sponheuer, and Karnik (MSK)-81, and Chinese Seismic Intensity Scale (CSIS)-08 intensity scales were utilized to evaluate the resulting damage. This study carried out a vulnerability analysis of typical structures, established vulnerability seismic-damage matrices, and mapped out vulnerability curves under different intensities. Our objective is to demonstrate that the use of multiple intensity scales can lead to very different intensity levels. The differences in the damage of typical structures under different intensity levels were obtained from an evaluation using the three aforementioned intensity scales. As a result, a calculation model of the mean damage index is proposed herein. Ultimately, this article conducted an analysis on the failure characteristics of typical structures in an earthquake and provided effective measures to improve seismic performance for future reference.

2019 ◽  
Vol 9 (7) ◽  
pp. 1481 ◽  
Author(s):  
Shangshun Lin ◽  
Zhanghua Xia ◽  
Jian Xia

The large degradation of the mechanical performance of hollow reinforced concrete (RC) bridge piers subjected to multi-dimensional earthquakes has not been thoroughly assessed. This paper aims to improve the existing seismic damage model to assess the seismic properties of tall, hollow RC piers subjected to pseudo-static, biaxial loading. Cyclic bilateral loading tests on fourteen 1/14-scale pier specimens with different slenderness ratios, axial load ratios, and transverse reinforcement ratios were carried out to investigate the damage propagation and the cumulative dissipated energy with displacement loads. By considering the influence of energy dissipation on structural damage, a new damage model (M-Usami model) was developed to assess the damage characteristics of hollow RC piers. The results present four consecutive damage stages during the loading process: (a) cracking on concrete surface, (b) yielding of longitudinal reinforcements; (c) spalling of concrete, and (d) collapsing of pier after the concrete crushed and the longitudinal bars ruptured due to the flexural failure. The damage level caused by the seismic waves can be reduced by designing specimens with a good seismic energy dissipation capacity. The theoretical damage index values calculated by the M-Usami model agreed well with the experimental observations. The developed M-Usami model can provide insights into the approaches to assessing the seismic damage of hollow RC piers subjected to bilateral seismic excitations.


2017 ◽  
Vol 747 ◽  
pp. 620-627 ◽  
Author(s):  
Silvia Colonna ◽  
Stefania Imperatore ◽  
Maria Zucconi ◽  
Barbara Ferracuti

The historical masonry buildings are characterised by a great vulnerability regard the seismic action, as the recent events occurred in Central Italy have highlighted. During the seismic emergency the authors, in collaboration with the Civil Protection Department as part of the ReLUIS activities, have carried out usability inspections, analysing also the case study described in this paper. The structure, a school in Teramo, was already affected by previously seismic damages and it has been highly involved by the seismic events abovementioned. In this work the results of first inspection, reported in the AeDES form, and a more accurate visual inspection are presented in terms of detection of the crack patterns and evaluation of the seismic damages index. Moreover the vulnerability index has been calculated according to the GNDT 2° level method. The vulnerability index is finally used to calculate the damage index expected for the seismic intensity registered during the seismic event of October 30, 2016, and compared with the observed post-seismic damage level.


Author(s):  
Chin-Hsiung Loh ◽  
Min-Hsuan Tseng ◽  
Shu-Hsien Chao

One of the important issues to conduct the damage detection of a structure using vibration-based damage detection (VBDD) is not only to detect the damage but also to locate and quantify the damage. In this paper a systematic way of damage assessment, including identification of damage location and damage quantification, is proposed by using output-only measurement. Four level of damage identification algorithms are proposed. First, to identify the damage occurrence, null-space and subspace damage index are used. The eigenvalue difference ratio is also discussed for detecting the damage. Second, to locate the damage, the change of mode shape slope ratio and the prediction error from response using singular spectrum analysis are used. Finally, to quantify the damage the RSSI-COV algorithm is used to identify the change of dynamic characteristics together with the model updating technique, the loss of stiffness can be identified. Experimental data collected from the bridge foundation scouring in hydraulic lab was used to demonstrate the applicability of the proposed methods. The computation efficiency of each method is also discussed so as to accommodate the online damage detection.


Author(s):  
Wen-Yu He ◽  
Wei-Xin Ren ◽  
Lei Cao ◽  
Quan Wang

The deflection of the beam estimated from modal flexibility matrix (MFM) indirectly is used in structural damage detection due to the fact that deflection is less sensitive to experimental noise than the element in MFM. However, the requirement for mass-normalized mode shapes (MMSs) with a high spatial resolution and the difficulty in damage quantification restricts the practicability of MFM-based deflection damage detection. A damage detection method using the deflections estimated from MFM is proposed for beam structures. The MMSs of beams are identified by using a parked vehicle. The MFM is then formulated to estimate the positive-bending-inspection-load (PBIL) caused deflection. The change of deflection curvature (CDC) is defined as a damage index to localize damage. The relationship between the damage severity and the deflection curvatures is further investigated and a damage quantification approach is proposed accordingly. Numerical and experimental examples indicated that the presented approach can detect damages with adequate accuracy at the cost of limited number of sensors. No finite element model (FEM) is required during the whole detection process.


2014 ◽  
Vol 56 (6) ◽  
Author(s):  
Ioannis G. Fountoulis ◽  
Spyridon D. Mavroulis

On September 13, 1986, a shallow earthquake (Ms=6.2) struck the city of Kalamata and the surrounding areas (SW Peloponnese, Greece) resulting in 20 fatalities, over 300 injuries, extensive structural damage and many earthquake environmental effects (EEE). The main shock was followed by several aftershocks, the strongest of which occurred two days later (Ms=5.4). The EEE induced by the 1986 Kalamata earthquake sequence include ground subsidence, seismic faults, seismic fractures, rockfalls and hydrological anomalies. The maximum ESI 2007 intensity for the main shock has been evaluated as IX<sub>ESI 2007</sub>, strongly related to the active fault zones and the reactivated faults observed in the area as well as to the intense morphology of the activated Dimiova-Perivolakia graben, which is a 2nd order neotectonic structure located in the SE margin of the Kalamata-Kyparissia mega-graben and bounded by active fault zones. The major structural damage of the main shock was selective and limited to villages founded on the activated Dimiova-Perivolakia graben (IX<sub>EMS-98</sub>) and to the Kalamata city (IX<sub>EMS-98</sub>) and its eastern suburbs (IX<sub>EMS-98</sub>) located at the crossing of the prolongation of two major active fault zones of the affected area. On the contrary, damage of this size was not observed in the surrounding neotectonic structures, which were not activated during this earthquake sequence. It is concluded that both intensity scales fit in with the neotectonic regime of the area. The ESI 2007 scale complemented the EMS-98 seismic intensities and provided a completed picture of the strength and the effects of the September 13, 1986, Kalamata earthquake on the natural and the manmade environment. Moreover, it contributed to a better picture of the earthquake scenario and represents a useful and reliable tool for seismic hazard assessment.


Author(s):  
Marina Yusoff ◽  
Faris Mohd Najib ◽  
Rozaina Ismail

The evaluation of the vulnerability of buildings to earthquakes is of prime importance to ensure a good plan can be generated for the disaster preparedness to civilians. Most of the attempts are directed in calculating the damage index of buildings to determine and predict the vulnerability to certain scales of earthquakes. Most of the solutions used are traditional methods which are time consuming and complex. Some of initiatives have proven that the artificial neural network methods have the potential in solving earthquakes prediction problems. However, these methods have limitations in terms of suffering from local optima, premature convergence and overfitting. To overcome this challenging issue, this paper introduces a new solution to the prediction on the seismic damage index of buildings with the application of hybrid back propagation neural network and particle swarm optimization (BPNN-PSO) method. The prediction was based on damage indices of 35 buildings around Malaysia. The BPNN-PSO demonstrated a better result of 89% accuracy compared to the traditional backpropagation neural network with only 84%. The capability of PSO supports fast convergence method has shown good effort to improve the processing time and accuracy of the results.


Author(s):  
Nesrin Sarigul-Klijn ◽  
Israel Lopez ◽  
Seung-Il Baek

Vibration and acoustic-based health monitoring techniques are presented to monitor structural health under dynamic environment. In order to extract damage sensitive features, linear and nonlinear dimensional reduction techniques are applied and compared. First, a vibration numerical study based on the damage index method is used to provide both location and severity of impact damage. Next, controlled scaled experimental measurements are taken to investigate the aeroacoustic properties of sub-scale wings under known damage conditions. The aeroacoustic nature of the flow field in and around generic aircraft wing damage is determined to characterize the physical mechanism of noise generated by the damage and its applicability to battle damage detection. Simulated battle damage is investigated using a baseline, and two damage models introduced; namely, (1) an undamaged wing as baseline, (2) chordwise-spanwise-partial-penetration (SCPP), and (3) spanwise-chordwise-full-penetration (SCFP). Dimensional reduction techniques are employed to extract time-frequency domain features, which can be used to detect the presence of structural damage. Results are given to illustrate effectiveness of this approach.


2012 ◽  
Vol 568 ◽  
pp. 85-88
Author(s):  
Ming Gao

In 5·12 Wenchuan earthquake, most of the buildings were damaged at different degrees in Mianyang. To analysis seismic damage of RC frame structure building, and investigate its reinforcement situation,the results show that: For destruction of frame column or bottom frame structure column, enlarge section method is used mostly for reinforcement in civil engineering;To serious damage of affiliated structure such as filler wall and Parapet, most of them will be demolished and built again, and add constructional column; To the situation of concrete bottom plate with crack, paste carbon fiber sheet or bottom plant steel was used depending on the structural damage degree, and jet concrete for strengthening.


Sign in / Sign up

Export Citation Format

Share Document