Non-invasive biomarkers of oxidative stress: reproducibility and methodological issues

Redox Report ◽  
2004 ◽  
Vol 9 (3) ◽  
pp. 125-143 ◽  
Author(s):  
Irfan Rahman ◽  
Saibal K. Biswas
Author(s):  
Tiziano Iemmi ◽  
Alessandro Menozzi ◽  
Marcos Pérez-López ◽  
Giuseppina Basini ◽  
Francesca Grasselli ◽  
...  

In the present study, the Eurasian magpie (Pica pica), was evaluated as a possible bioindicator of environmental pollution by heavy metals (HMs). Levels of Ni, Pb, Cd, and Hg in feathers of 64 magpies (31 males and 33 females) were measured by ICP-MS technique. Plasmatic biomarkers of oxidative stress (OS) were also assessed. The birds were captured in the province of Parma (Italy), in different capture sites within 1 km from urban area (UZ), and farther than 5 km from urban area (RZ). Median HM levels were 0.68 mg/kg (0.18–2.27), 2.80 mg/kg (0.41–17.7), <limit of detection (LOD) mg/kg (<LOD–0.25), 3.90 mg/kg (1.35–85.9) for Ni, Pb, Cd and Hg, respectively. No significant differences in HM levels were found according to sex, while Ni and Pb were significantly higher in adult compared to young birds (p = 0.047, p = 0.004). Conversely, Cd and Hg levels in young magpies resulted higher than those of adults (p = 0.001 and p = 0.004). No correlation was found between OS biomarkers and HM levels. No differences were found in HM levels according to capture area, except for Hg level, which resulted higher in magpies of RZ (4.05 mg/kg (1.35–12.7)) compared to UZ (2.99 mg/kg (1.54–85.9)). Further experiments are needed to establish whether magpie feathers could represent a suitable non-invasive tool for biomonitoring HMs in the environment.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 145
Author(s):  
Ashley K. Putman ◽  
G. Andres Contreras ◽  
Lorraine M. Sordillo

Oxidative stress has been associated with many pathologies, in both human and animal medicine. Damage to tissue components such as lipids is a defining feature of oxidative stress and can lead to the generation of many oxidized products, including isoprostanes (IsoP). First recognized in the early 1990s, IsoP are formed in numerous biological fluids and tissues, chemically stable, and easily measured by noninvasive means. Additionally, IsoP are highly specific indicators of lipid peroxidation and thereby are regarded as excellent biomarkers of oxidative stress. Although there have been many advancements in the detection and use of IsoP as a biomarker, there is still a paucity of knowledge regarding the biological activity of these molecules and their potential roles in pathology of oxidative stress. Furthermore, the use of IsoP has been limited in veterinary species thus far and represents an avenue of opportunity for clinical applications in veterinary practice. Examples of clinical applications of IsoP in veterinary medicine include use as a novel biomarker to guide treatment recommendations or as a target to mitigate inflammatory processes. This review will discuss the history, biosynthesis, measurement, use as a biomarker, and biological action of IsoP, particularly in the context of veterinary medicine.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 414
Author(s):  
Alain Menzel ◽  
Hanen Samouda ◽  
Francois Dohet ◽  
Suva Loap ◽  
Mohammed S. Ellulu ◽  
...  

Many chronic conditions such as cancer, chronic obstructive pulmonary disease, type-2 diabetes, obesity, peripheral/coronary artery disease and auto-immune diseases are associated with low-grade inflammation. Closely related to inflammation is oxidative stress (OS), which can be either causal or secondary to inflammation. While a low level of OS is physiological, chronically increased OS is deleterious. Therefore, valid biomarkers of these signalling pathways may enable detection and following progression of OS/inflammation as well as to evaluate treatment efficacy. Such biomarkers should be stable and obtainable through non-invasive methods and their determination should be affordable and easy. The most frequently used inflammatory markers include acute-phase proteins, essentially CRP, serum amyloid A, fibrinogen and procalcitonin, and cytokines, predominantly TNFα, interleukins 1β, 6, 8, 10 and 12 and their receptors and IFNγ. Some cytokines appear to be disease-specific. Conversely, OS—being ubiquitous—and its biomarkers appear less disease or tissue-specific. These include lipid peroxidation products, e.g., F2-isoprostanes and malondialdehyde, DNA breakdown products (e.g., 8-OH-dG), protein adducts (e.g., carbonylated proteins), or antioxidant status. More novel markers include also –omics related ones, as well as non-invasive, questionnaire-based measures, such as the dietary inflammatory-index (DII), but their link to biological responses may be variable. Nevertheless, many of these markers have been clearly related to a number of diseases. However, their use in clinical practice is often limited, due to lacking analytical or clinical validation, or technical challenges. In this review, we strive to highlight frequently employed and useful markers of inflammation-related OS, including novel promising markers.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 379
Author(s):  
Sandra Cordeiro ◽  
Beatriz Silva ◽  
Ana Margarida Martins ◽  
Helena Margarida Ribeiro ◽  
Lídia Gonçalves ◽  
...  

There are several approaches to treat ocular diseases, which can be invasive or non-invasive. Within the non-invasive, new pharmaceutical strategies based on nanotechnology and mucoadhesive polymers are emerging methodologies, which aim to reach an efficient treatment of eye diseases. The aim of this work was the development of novel chitosan/hyaluronic acid nanoparticle systems with mucoadhesive properties, intended to encapsulate antioxidant molecules (e.g., crocin) aiming to reduce eye oxidative stress and, consequently, ocular disease. An ultraviolet (UV) absorber molecule, actinoquinol, was also added to the nanoparticles, to further decrease oxidative stress. The developed nanoparticles were characterized and the results showed a mean particle size lower than 400 nm, polydispersity index of 0.220 ± 0.034, positive zeta potential, and high yield. The nanoparticles were also characterized in terms of pH, osmolality, and viscosity. Mucoadhesion studies involving the determination of zeta potential, viscosity, and tackiness, showed a strong interaction between the nanoparticles and mucin. In vitro release studies using synthetic membranes in Franz diffusion cells were conducted to unravel the drug release kinetic profile. Ex vitro studies using pig eye scleras in Franz diffusion cells were performed to evaluate the permeation of the nanoparticles. Furthermore, in vitro assays using the ARPE-19 (adult retinal pigment epithelium) cell line showed that the nanoparticles can efficiently decrease oxidative stress and showed low cytotoxicity. Thus, the developed chitosan/hyaluronic acid nanoparticles are a promising system for the delivery of antioxidants to the eye, by increasing their residence time and controlling their delivery.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 682 ◽  
Author(s):  
Julia Lorenzon dos Santos ◽  
Alexandre Schaan de Quadros ◽  
Camila Weschenfelder ◽  
Silvia Bueno Garofallo ◽  
Aline Marcadenti

Atherosclerosis is related to fat accumulation in the arterial walls and vascular stiffening, and results in acute coronary syndrome which is commonly associated with acute myocardial infarction. Oxidative stress participates in the pathogenesis of atherosclerosis. Thus, the inclusion of food sources of dietary antioxidants, such as different kinds of nuts, may improve biomarkers related to oxidative stress, contributing to a possible reduction in atherosclerosis progression. This article has briefly highlighted the interaction between oxidative stress, atherosclerosis, and cardiovascular disease, in addition to the effect of the consumption of different nuts and related dietary antioxidants—like polyphenols and vitamin E—on biomarkers of oxidative stress in primary and secondary cardiovascular prevention. Studies in vitro suggest that nuts may exert antioxidant effects by DNA repair mechanisms, lipid peroxidation prevention, modulation of the signaling pathways, and inhibition of the MAPK pathways through the suppression of NF-κB and activation of the Nrf2 pathways. Studies conducted in animal models showed the ability of dietary nuts in improving biomarkers of oxidative stress, such as oxLDL and GPx. However, clinical trials in humans have not been conclusive, especially with regards to the secondary prevention of cardiovascular disease.


2015 ◽  
Vol 81 ◽  
pp. 100-106 ◽  
Author(s):  
Maria B. Kadiiska ◽  
Shyamal Peddada ◽  
Ronald A. Herbert ◽  
Samar Basu ◽  
Kenneth Hensley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document