Synthesis and Characterization of ‘Epoxyphilic’ Montmorillonites

Clay Minerals ◽  
1994 ◽  
Vol 29 (2) ◽  
pp. 169-178 ◽  
Author(s):  
A. Akelah ◽  
P. Kelly ◽  
S. Qutubuddin ◽  
A. Moet

Abstract‘Epoxyphilic’ montmorillonites were prepared containing various functional groups which can react with one or both of the components in amine-cured epoxy formulations. The preparation involves the ion exchange of six organic ammonium compounds containing either carboxylic acid, anhydride, phenolic hydroxyl, alcoholic hydroxyl, amide or amine functional groups. X-ray diffraction, elemental analysis and FTIR studies confirm the intercalation of the organic cations to form epoxyphilic montmorillonites. The adsorption behaviour of the modified montmorillonites are compared with the unmodified montmorillonite in an epoxy resin before and after the curing process.

2015 ◽  
Vol 659 ◽  
pp. 127-131
Author(s):  
Usanee Malee ◽  
Sakdiphon Thiansem

The scientific process was used to explain characterization and physical properties of the clay sample close to the ancient Nan kiln site. These samples were obtained from JQA, FQB, PQC and NQD. X-ray diffraction (XRD) and X-ray fluorescence (XRF) technique were used to determine the chemical composition and phase transformation before and after fired at 800-1250 °C. XRF result was confirmed that all clay samples mainly contained SiO2(>80 wt. %) XRD pattern indicated that quartz was the majority of phase in the all of them. High amount of Fe2O3(>1.6 wt. %) was related to the red-brown tone color. The clay sample could be fired up to 1280 °C without wrapping behavior; it was found that FQB clay had the highest firing resistance due to the maximum quartz content.


2005 ◽  
Vol 552 (1-2) ◽  
pp. 201-206 ◽  
Author(s):  
Sibel Kahraman ◽  
Müşerref Önal ◽  
Yüksel Sarıkaya ◽  
İhsan Bozdoğan

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Bizuneh Workie ◽  
Brian E. McCandless ◽  
Zewdu Gebeyehu

We have studied electrophoretic deposition of AlN from its suspension in acetylacetone with I2as an additive. AlN powder with particle size <10 μm is dispersed to produce a positive charge and deposited on the cathode by applying fields greater than 10 V/cm between the electrodes. X-ray diffraction and FTIR studies indicate that the AlN before and after deposition has the same composition and structure. An increase in the amount of AlN in the suspension, the deposition potential, and the deposition time results in a linear increase in the weight of the AlN deposited. Electrophoretic deposition from 10 g/L AlN suspension shows an initial increase in the weight of AlN deposited with the concentration of I2, and the weight of AlN decreases after reaching a maximum at 0.20 g/L I2.


2021 ◽  
Author(s):  
Joanna Hrabia-Wiśnios ◽  
Beata Leszczyńska-Madej ◽  
Marcin Madej ◽  
Aleksandra Węglowska

Abstract The paper presents the results of research on the microstructure and selected mechanical properties of the SnSbCu bearing alloy after friction stir processing (FSP). The Whorl tool was used for modification; the process was carried out using two rotational speeds of the tool: 280 and 450 RPM and a constant linear speed of 355 mm/min. Microstructure studies were performed employing the techniques of light microscopy and scanning electron microscopy along with analysis of the chemical composition of micro-areas. Additionally, the phase composition was investigated by means of the X-ray diffraction method and statistical analysis of the precipitates present in the investigated alloy. In addition, hardness, flexural strength and uniaxial compression tests were performed before and after FSP modification. It was proved that using FSP to modify the SnSbCu alloy promotes refinement and homogenization of the microstructure, as well as improvement of the flexural strength, whereas no changes in the hardness level were found.


2013 ◽  
Vol 6 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Abdulmula Ali Albhilil ◽  
Martin Palou ◽  
Jana Kozánková

Abstract Series of six cordierite-mullite ceramics were synthesized via solid state reaction at various temperatures from 1250 °C for pure cordierite to 1500 °C for pure mullite. Then the samples were submitted to the test of thermal shock resistance based on cycling heating-quenching procedure. X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Mercury intrusion porosimeter (MIP) have been used to characterize the samples before and after cycling heating-quenching method. Sample 6 was broken after 35 heating-quenching cycles, while the five other reminded stable. The refractoriness of samples is found to be higher than that of commercial ones. XRD shows that heating-quenching procedure has led to crystallization of cordierite and mullite phases. Apart from sample 6, the pore structure is stable with slight consolidation. The microstructure images confirm the results of XRD and MIP showing crack in sample 6 only, but compact and larger particles resulting from crystal growth in other samples due to the repeated action of heating.


2017 ◽  
Vol 262 ◽  
pp. 487-491 ◽  
Author(s):  
Sina Ghassa ◽  
Hadi Abdollahi ◽  
Mahdi Gharabaghi ◽  
Saeed Chehreh Chelgani ◽  
Mohammad Jafari

The mineral surface chemistry characterization is essential to describe the dissolution kinetics in leaching and bioleaching. Five different methods, including X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy, have been applied to study the surface chemistry changes during pyrite, sphalerite and molybdenite bioleaching. The surface characterizations have been done for samples before and after biological and chemical leaching. The SEM images illustrated that the minerals surfaces were smooth before processing, while they covered with an ash layer after biological treatment. Although EDS analysis and Raman spectrum demonstrated the potassium jarosite formation on the pyrite surface during bioleaching, the formation of jarosite layer did not occur on the sphalerite surfaces during bioleaching. On the other hand, a sulfur layer formation on the sphalerite surface was confirmed by mentioned characterization methods. Finally, according to the XRD and EDS spectrum the molybdenite surface had been covered both with sulfur and jarosite.


2019 ◽  
Vol 280 ◽  
pp. 04003
Author(s):  
Agus Mirwan ◽  
Meilana Dharma Putra ◽  
Riani Ayu Lestari

The existence of peat clay is scattered in many parts of the world with the huge amount. The high compound of minerals in the peat clay can be potentially used as adsorbent and catalyst. This research aims to study the composition of peat clay and functional group of the compound in the peat clay. The characterization of x-ray fluorescence (XRF), fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and scanning electron microscope-energy dispersive x-ray (SEM- EDX) were assigned to compare the sample before and after calcination process at 700 oC 120 min. FTIR analysis showed the presence of quartz, kaolinite, hematite, illite in peat clay. The results of XRF analysis showed that chemical composition of peat clay was dominantly in the form of silica oxide (18%), aluminum oxide (7%), and iron oxide (15%). The amount of compounds was observed to increase to be 32%, 18% and 11%, respectively after calcinations. XRD analysis confirmed the presence of this mineral in the peat clay. SEM analysis showed flake structure of peat clay with EDX which indicated composition of the dominant element namely the presence of Al, Si, and Fe before and after calcination. This high amount of minerals in peat clay led to potential source to be utilized as adsorbent for removing the pollutant or as and catalyst for chemical process.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Wenya He ◽  
Hanzhi Zhang ◽  
Ye Zhang ◽  
Mengdi Liu ◽  
Xin Zhang ◽  
...  

An electrodeposition method for fabrication of CuTe and Cu2Te thin films is presented. The films’ growth is based on the epitaxial electrodeposition of Cu and Te alternately with different electrochemical parameter, respectively. The deposited thin films were characterized by X-ray diffraction (XRD), field emission scanning electronic microscopy (FE-SEM) with an energy dispersive X-ray (EDX) analyzer, and FTIR studies. The results suggest that the epitaxial electrodeposition is an ideal method for deposition of compound semiconductor films for photoelectric applications.


Author(s):  
Joanna Hrabia-Wiśnios ◽  
Beata Leszczyńska-Madej ◽  
Marcin Madej ◽  
Aleksandra Węglowska

AbstractThe paper presents the results of research on the microstructure and selected mechanical properties of the SnSbCu-bearing alloy after friction stir processing (FSP). The Whorl tool was used for modification; the process was carried out using two rotational speeds of the tool: 280 and 450 RPM and a constant linear speed of 355 mm/min. Microstructure studies were performed employing the techniques of light microscopy and scanning electron microscopy along with analysis of the chemical composition of micro-areas. Additionally, the phase composition was investigated by means of the X-ray diffraction method and statistical analysis of the precipitates present in the investigated alloy. In addition, hardness, flexural strength, and uniaxial compression tests were performed before and after FSP modification. It was proved that using FSP to modify the SnSbCu alloy promotes refinement and homogenization of the microstructure, as well as improvement of the flexural strength, whereas no changes in the hardness level were found.


1994 ◽  
Vol 365 ◽  
Author(s):  
N.R. Khasgiwale ◽  
E.P. Butler ◽  
L. Tsakalakos ◽  
D.A. Hensley ◽  
W.R. Cannon ◽  
...  

ABSTRACTPseudo-porous SiC/C coatings were deposited on Nextel™440 and Nicalon™ fibers by CVD. The morphology and chemistry of the coatings was evaluated, both before and after oxidation, using Scanning Electron Microscopy (SEM), X-Ray Diffraction Analysis (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Auger spectroscopy. Coated fibers were subjected to two different oxidation treatments to assess coating stability: a) oxidation at 600°C for 20 hours, and b) oxidation at 1000°C for 20 hours. Pseudo-porous SiC/C on Nicalon™ fibers appear to be more oxidation resistant than the same coatings on Nextel™440 fibers.


Sign in / Sign up

Export Citation Format

Share Document