Rare earth element-bearing tausonite and potassium barium titanates from the Little Murun potassic alkaline complex, Yakutia, Russia

1993 ◽  
Vol 57 (389) ◽  
pp. 651-664 ◽  
Author(s):  
Roger H. Mitchell ◽  
Nikolai V. Vladykin

AbstractTausonites occurring in aegirine potassium feldspar syenite from the Little Murun potassic alkaline complex are characterised by complex growth and resorption features. These are attributed to nonequilibrium crystallisation in a dynamic environment characterised by magma mixing and/or volatile degassing. The crystals represent a transported assemblage which has no simple relationship to the magma from which their host rock crystallised. Tausonites exhibit significant normal, reverse and oscillatory compositional zoning with respect to strontium and the rare earth elements. The compositions are unique, ranging from tausonite to strontian cerian loparite, and are unlike those found in strontian perovskites from lamproites and fenites associated with carbonatites.Compositional data are presented for Ba-rich titanates belonging to the hollandite group, Ba(Ti,Fe)5O11 and K2Ti13O27. The titanates, on the basis of textural evidence, are interpreted to have formed by the reaction of K-Ba-rich residual liquids with pre-existing Ti-magnetite, ilmenite and tausonite. The compositions of the titanates are similar to those of primary titanates found in kimberlites and carbonatites.

2021 ◽  
pp. SP513-2021-28
Author(s):  
Satya Narayana Mahapatro ◽  
M. L. Renjith ◽  
Ranjit Kumar Martha ◽  
Rakesh Kumar Patel ◽  
Dewashish Upadhyay ◽  
...  

AbstractIn this study, we constrain the petrogenesis and U-Pb zircon age of a newly discovered alkaline complex, christened the Chaitma Alkaline Complex at the southern margin of the Central Indian Tectonic Zone in Central India. The Chaitma Alkaline Complex comprises syenites and gabbro, emplaced coevally and show features consistent with magma mixing. Geochemically, syenites are potassic to ultrapotassic (K2O/Na2O: 0.79-3.42) and contain high Ba (∼800 to 2700 ppm) and Sr (∼1400-3200 ppm). They show enrichment of the light rare earth elements (LREE) relative to the heavy rare earth elements (HREE) (La/Yb: 32-103) and do not display Eu-anomaly. Based on their geochemical signatures such as low MgO (<0.87 wt.%), Ni (8-16 ppm) and Cr (7-44 ppm) contents and prominent Zr-Hf negative anomaly, the syenites are inferred to have been derived by partial melting of a carbonated/metasomatised thickened lower crustal source. The coeval gabbros are undersaturated in silica (41-44 wt.%) with relatively high total alkalis (Na2O+K2O: 3.7-5.1 wt.%), Fe2O3 (17-19 wt.%), P2O5 (3.1-4.9 wt.%), Sr (1600-3400 ppm) and Ba (300-3500 ppm) contents. These have low MgO (<4.8 wt.%), Ni (13-30 ppm) and Cr (18-84 ppm). Their chemistry is interpreted to be the result of interaction with the syenitic magma. These geochemical characters along with high LREE/HREE ratio, negative trough in Nb-Ta, Zr-Hf, Ti, Sr and Rb and positive spike of Pb in spider diagram, and enrichment of LILE over HFSE indicate their derivation from metasomatised subduction modified garnet-peridotite mantle source. Our study indicates that syenites and gabbros of the Chaitma Alkaline Complex were formed from genetically unrelated parental magmas derived from distinct sources. U-Pb dating of zircon yielded magmatic emplacement age of 1626±15 Ma for the syenites. The Chaitma Alkaline Complex was presumably formed during a short period of crustal extension in the midst of a protracted period of continent-continent collision and granulite grade metamorphism (c. 1.71-1.58 Ga) at the southern margin of the Central Indian Tectonic Zone.


1987 ◽  
Vol 24 (7) ◽  
pp. 1360-1385 ◽  
Author(s):  
Wayne T. Jolly

Bimodal volcanism associated with early phases of Huronian rifting in central Ontario, dated about 2450 Ma, produced low-Ti tholeiitic basalts and two varieties of crustally derived calc-alkaline rhyolite. Early tholeiites are characteristically highly evolved, have Mg* values from 30 to 50, and display pronounced enrichment in large-ion lithophile elements (LILE) and light rare-earth element (LREE) in comparison with modern oceanic basalts, fractionated heavy rare-earth element (HREE) patterns, and low Ti, Zr, P, Nb, Ba, and K abundances. Ti/Zr ratios rise progressively in early basalts and associated basaltic andesite fractionates from about 35 in early flows to 55 in central units. Late basalts also carry enriched LILE and LREE, but, in contrast to early types, have average Mg* values greater than 50 and lower rare-earth element (REE) abundances with flat HREE patterns. They also display negative Ba, Nb, and P anomalies on chondrite-normalized distribution diagrams, but lack low K, Zr, and Ti contents. Their Ti/Zr ratios of about 80 approach chondritic levels. Melting models suggest the differences are explained by lower degrees of fusion (as low as 10%) in a hydrated, LILE- and LREE-enriched peridotite during generation of the early basalts, leaving a residue containing appreciable garnet, amphibole, Ti oxides, zircon, and apatite.Erupted simultaneously with the basalts were two distinctive rhyolite types: (1) a low-LILE, high-LREE group (25% of analysed specimens), derived by −20% melting of granulitic siliceous tonalitic gneiss, presumably at deep crustal levels, and (2) a high-LILE, low-LREE group (75%), derived, probably at shallower levels, by ≤ 30% melting in granitic rocks with pegmatitic or leucogranitic compositions. Mutual magma mixing of basalts and rhyolites during early stages of volcanism produced abundant hybrid andesites, but the frequency of contamination is much lower in later units.Hypothetical subcontinental source compositions, calculated from the Raleigh equation, suggest that the Huronian mantle had already undergone a complex history. Low Ba, Nb, P, Ti, and depleted HREE abundances compared with abundances for modern oceanic basalts suggest that a basaltic melt had already been withdrawn from this source during Archean time. Subsequently, an episode of hydrous metasomatism enriched the source in LILE and LREE. The latter event resulted from (1) subcontinental mantle metasomatism by previous Archean subduction, (2) mantle metasomatism during the terminal Archean Kenoran Orogeny, or (3) a wave of hydrous metasomatism accompanying Huronian mantle convection immediately preceding volcanism.


2020 ◽  
Vol 57 (9) ◽  
pp. 1011-1029
Author(s):  
Gabriel Sombini dos Santos ◽  
Sandra M. Barr ◽  
Chris E. White ◽  
Deanne van Rooyen

The Margaree pluton extends for >40 km along the axis of the Ganderian Aspy terrane of northern Cape Breton Island, Nova Scotia. The pluton consists mainly of coarse-grained megacrystic syenogranite, intruded by small bodies of medium-grained equigranular syenogranite and microgranite porphyry, all locally displaying rapakivi texture. The three rock types have similar U–Pb (zircon) ages of 363 ± 1.6, 364.8 ± 1.6, and 365.5 ± 3.3 Ma, respectively, consistent with field and petrological evidence that they are coeval and comagmatic. The rare earth elements display parallel trends characterized by enrichment in the light rare earth elements, flat heavy rare earth elements, moderate negative Eu anomalies, and, in some cases, positive Ce anomalies. The megacrystic and rapakivi textures are attributed to thermal perturbation in the magma chamber caused by the mixing of mafic and felsic magma, even though direct evidence of the mafic magma is mainly lacking at the current level of exposure. Magma evolution was controlled by fractionation of quartz, K-feldspar, and Na-rich plagioclase in molar proportions of 0.75:0.12:0.13. The chemical and isotopic (Sm–Nd) signature of the Margaree pluton is consistent with the melting of preexisting continental crust that was enriched in heat-producing elements, likely assisted by intrusion of mantle-derived mafic magma during Late Devonian regional extension. The proposed model involving magma mixing at shallow crustal levels in a cryptic silicic-mafic magma chamber during post-Acadian extension is consistent with models for other, better exposed occurrences of rapakivi granite in the northern Appalachian orogen.


Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 442 ◽  
Author(s):  
Frances Chikanda ◽  
Tsubasa Otake ◽  
Yoko Ohtomo ◽  
Akane Ito ◽  
Takaomi D. Yokoyama ◽  
...  

Carbonatites undergo various magmatic-hydrothermal processes during their evolution that are important for the enrichment of rare earth elements (REE). This geochemical, petrographic, and multi-isotope study on the Kangankunde carbonatite, the largest light REE resource in the Chilwa Alkaline Province in Malawi, clarifies the critical stages of REE mineralization in this deposit. The δ56Fe values of most of the carbonatite lies within the magmatic field despite variations in the proportions of monazite, ankerite, and ferroan dolomite. Exsolution of a hydrothermal fluid from the carbonatite melts is evident based on the higher δ56Fe of the fenites, as well as the textural and compositional zoning in monazite. Field and petrographic observations, combined with geochemical data (REE patterns, and Fe, C, and O isotopes), suggest that the key stage of REE mineralization in the Kangankunde carbonatite was the late magmatic stage with an influence of carbothermal fluids i.e. magmatic–hydrothermal stage, when large (~200 µm), well-developed monazite crystals grew. The C and O isotope compositions of the carbonatite suggest a post-magmatic alteration by hydrothermal fluids, probably after the main REE mineralization stage, as the alteration occurs throughout the carbonatite but particularly in the dark carbonatites.


1994 ◽  
Vol 353 ◽  
Author(s):  
R. Bros ◽  
F. Gauthier-Lafaye ◽  
P. Larque ◽  
J. Samuel ◽  
P. Stille

AbstractNew mineralogical and isotopic studies were carried out on samples from the Bangombé natural nuclear reactor. This reactor is located at shallow depth in the weathering profile and has been subjected to severe supergene alteration. Textural evidence indicates partial dissolution of uraninite in the Bangombé ore related to precipitation of Fe-Ti oxi-hydroxides and clay minerals (kaolinite and metahalloysite). As a consequence of the alteration of the uraninite, uranium and f issiogenic rare earth elements were released in the clayey border of the reactor, whereas radiogenic 232Th remained confined in the close vicinity of the core. A retention effect is also evidenced, under reducing conditions, in the black shales located above the reactor.


Geosphere ◽  
2021 ◽  
Author(s):  
Juliana Mesa ◽  
Rebecca A. Lange

A detailed petrological study is presented to constrain the origin of a suite of alkali olivine basalt and hawaiite (&gt;5 wt% MgO) lavas that were erupted in a rift zone within the western Mexican arc (Trans-Mexican Volcanic Belt), adjacent to the Sangangüey andesitic stratovolcano, together with more evolved lavas (mugearites and benmoreites; &lt;5 wt% MgO). As previously documented in the literature, the Sangangüey mafic lavas are devoid of any arc geochemical signature, despite their location within an arc. In this study, a new olivine-melt thermometer/hygrometer, based on the partition­ing behavior of Ni2+ and Mg2+, was applied to the Sangangüey basalts (SB). The results show that the high-MgO (&gt;9 wt%) SB crystallized at higher temperatures and lower melt-water contents (0–1.3 wt%) compared to high-MgO arc basalts (≤5.7 wt% H2O) erupted in the west-central Mexican arc. The Sangangüey lavas with 5–8 wt% MgO display evidence of mixing between high-MgO alkali olivine basalts and low-MgO mugearites. It is proposed that the unique composition of the mugearites (i.e., low SiO2 contents and elevated FeO and TiO2 contents) is the result of partial melting of mafic lower crust driven by the influx of high-MgO intraplate basalts under relatively hot, dry, and reduced conditions. On the basis of crystal textures and compositional zoning patterns, it is shown that both phenocryst growth and magma mixing occurred rapidly, most likely during ascent along fractures, and not slowly during prolonged storage in a crustal magma chamber.


2019 ◽  
Vol 57 (4) ◽  
pp. 499-517 ◽  
Author(s):  
Ren Z. Zhu ◽  
Pei Ni ◽  
Jun Y. Ding ◽  
Guo G. Wang ◽  
Ming S. Fan ◽  
...  

AbstractThis paper presents the first major and trace element compositions of mantle-derived garnet xenocrysts from the diamondiferous No. 30 kimberlite pipe in the Wafangdian region, and these are used to constrain the nature and evolution of mantle metasomatism beneath the North China Craton (NCC). The major element data were acquired using an electron probe micro-analyzer and the trace element data were obtained using laser ablation inductively coupled plasma-mass spectrometry. Based on Ni-in-garnet thermometry, equilibrium temperatures of 1107–1365 °C were estimated for peridotitic garnets xenocrysts from the No. 30 kimberlite, with an average temperature of 1258 °C, and pressures calculated to be between 5.0 and 7.4 GPa. In a CaO versus Cr2O3 diagram, 52% of the garnets fall in the lherzolite field and 28% in the harzburgite field; a few of the garnets are eclogitic. Based on rare earth element patterns, the lherzolitic garnets are further divided into three groups. The compositional variations in garnet xenocrysts reflect two stages of metasomatism: early carbonatite melt/fluid metasomatism and late kimberlite metasomatism. The carbonatite melt/fluids are effective at introducing Sr and the light rare earth elements, but ineffective at transporting much Zr, Ti, Y, or heavy rare earth elements. The kimberlite metasomatic agent is highly effective at element transport, introducing, e.g., Ti, Zr, Y, and the rare earth elements. Combined with compositional data for garnet inclusions in diamonds and megacrysts from the Mengyin and Wafangdian kimberlites, we suggest that these signatures reflect a two-stage evolution of the sub-continental lithospheric mantle (SCLM) beneath the NCC: (1) early-stage carbonatite melt/fluid metasomatism resulting in metasomatic modification of the SCLM and likely associated with diamond crystallization; (2) late-stage kimberlite metasomatism related to the eruption of the 465 Ma kimberlite.


Author(s):  
Igor V. Pekov ◽  
Irina A. Ekimenkova

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Pekov, I. V., & Ekimenkova, I. A. (2001). Two new rare-earth-rich mineral associations in the Ilímaussaq alkaline complex, South Greenland. Geology of Greenland Survey Bulletin, 190, 143-144. https://doi.org/10.34194/ggub.v190.5185 _______________ Two new types of REE-rich mineral associations have been discovered at Kvanefjeld in the northern part of the Ilímaussaq alkaline complex. Type 1 consists of ussingite veins intersecting lujavrite and containing 5–7% nacareniobsite-(Ce) and 2–4% steenstrupine-(Ce); the adjacent altered lujavrite contains up to 10–12% nacareniobsite-(Ce). Type 2 consists of cavernous sodalite-rich veinlets and vugs in lujavrite containing 5–8% vitusite-(Ce). The chemical compositions and unit cell parameters of REE minerals are given. Nacareniobsite-(Ce) and vitusite-(Ce) were considered to be extremely rare minerals in the Ilímaussaq complex. Nacareniobsite-(Ce) is now known to be of more widespread occurrence in some hyper-agpaitic rocks of the Ilímaussaq complex, and vitusite-(Ce) is known to be the precursor of the widespread occurrence of the yellow pseudomorphs termed erikite.


2008 ◽  
Vol 589 ◽  
pp. 143-148
Author(s):  
T. Radoczy ◽  
Kristof Kovacs ◽  
N. Sarzo

High purity as well as Ce-, Pr- and Y-doped polycrystalline BaTiO3 ceramics were prepared by wet chemical synthesis. Dielectric constant as well as dielectric loss of dry pressed and sintered ceramics show dielectric constant above 20000 for samples containing 0.5 % Ce accompanied by semiconducting properties. X-ray diffraction studies confirmed Ti being substituted by Ce an Y, while Pr substitutes Ba ions.


2021 ◽  
Author(s):  
Gao-Hua Fan ◽  
Jian-Wei Li ◽  
Xiao-Dong Deng ◽  
Wen-Sheng Gao ◽  
Si-Yuan Li

Abstract Dongping is the largest Au-Te vein deposit (~120 t Au) in the North China craton, but its age, origin, and setting remain unsolved. Here, we integrate paragenesis, geochemistry, and in situ U-Pb geochronology of garnet to constrain the timing and possible origin of the Dongping Au-Te deposit. Gold mineralization at Dongping is hosted in the Shuiquangou alkaline complex (ca. 401–390 Ma) and dominated by quartz-sulfide veins with minor ores in adjacent alteration envelopes. Andradite to grossular garnets are recognized in pre-, syn-, and post-ore quartz veins as well as mineralized alteration envelopes and are closely associated with a variety of ore and gangue minerals, mainly including K-feldspar, quartz, specularite, magnetite, pyrite, tellurides, epidote, and calcite. The paragenetic, textural, fluid inclusion, and compositional data suggest that garnets precipitated directly from a low-salinity fluid at 302° to 383°C and 90 to 330 bar. Garnets from various veins and alteration envelopes have similar U contents ranging from 0.80 to 13.89 mg/kg and yield reproducible U-Pb dates of 142 ± 5 to 139 ± 6 Ma (1σ) by laser ablation-inductively coupled plasmamass spectrometry. The dating results suggest that gold mineralization at Dongping occurred in the Early Cretaceous and thus preclude a genetic link between Au-Te mineralization and the ore-hosting alkaline intrusion as commonly suggested. When combined with independent geologic, geochemical, and geochronological studies, the new garnet U-Pb dates allow us to classify the Dongping Au-Te deposit as an oxidized intrusion-related gold deposit, with the causative magma likely derived from melting of an ancient enriched lithospheric mantle source due to destruction of the subcontinental lithospheric keel beneath the North China craton—a catastrophic event induced by the westward subduction of the Paleo-Pacific plate. This study highlights garnet U-Pb dating as a potential robust geochronometer for gold vein deposits elsewhere.


Sign in / Sign up

Export Citation Format

Share Document