Usambara effect in tourmaline: optical spectroscopy and colourimetric studies

2016 ◽  
Vol 80 (5) ◽  
pp. 705-717 ◽  
Author(s):  
Michail N. Taran ◽  
Ievgen V. Naumenko

AbstractThe Usambara effect, i.e. a change of tourmaline colour from deep-green to dark-red with increasing path length of light, has been studied by optical absorption spectroscopy and colourimetric calculations on a sample of Tanzanian tourmaline of predominant dravite composition with 0.12 apfu Cr. For comparison a dark-green vanadium-bearing tourmaline from Tanzania (0.05 apfu V), which does not show such an effect, was also investigated. As established, the Usambara effect, by its nature, is closely related to the alexandrite effect, although in this case the colour change is not caused by change of spectral composition of the light of illumination, but by spectral positions of the spin-allowed absorption bands of Cr3+, a specific ratio of light transmission in two windows of transparency, green and red, and by non-linear, exponential dependence of the light transmittance on the thickness of sample. A threshold chromium content must be exceeded for the Usambara effect to show, that is, sufficient chromium for there to be two deep and well-demarcated windows of transparency in the visible range. The overall colouration results from mixing of two additive colours coming through the windows of transparency. A dark-green chromium-bearing tourmaline from the Ural Mountains (0.40 and 0.20 apfu Cr and Fe, respectively) shows how admixtures of other chromophore ions, namely, Fe2+and Fe3+, can suppress the Usambara effect in tourmaline.

2020 ◽  
Vol 10 (23) ◽  
pp. 8372
Author(s):  
Giuseppina Anna Corrente ◽  
Sante Cospito ◽  
Agostina Lina Capodilupo ◽  
Amerigo Beneduci

Electrochromic devices (ECDs) that allow the modulation of light transmission are very attractive in the research field of energy saving. Here all-in-one gel switchable ECDs based on mixed-valence electroactive compounds were developed. The use of the thienoviologen/ferrocene couple as cathode and anode, respectively, leads to a significant electrochromic band in the visible range (550–800 nm), with a color change from yellow to green, and to a lower band in the NIR region (1000–1700 nm), due to the presence of one electroactive-chromic species. Replacement of the electroactive ferrocene with a fluorene-diarylamine electroactive-chromic species, allows to extend and intensify the absorption in the NIR region, thus affording modulation of the solar radiation from 500 up to 2200 nm. High optical contrast, fast coloration and bleaching times and outstanding coloration efficiencies were measured for all observed absorption bands upon the application of small potential differences (1.4 V < DV < 2 V).


2020 ◽  
Vol 3 (59) ◽  
pp. 97-100
Author(s):  
Ye. Lobanov ◽  
G. Nikitsky ◽  
O. Petchenko ◽  
G. Petchenko

Today ionic crystals are widely used in devices for various purposes. In X-ray spectral optics they are widely used as crystal monochromators; ionic crystals are used in optical devices where lenses and transparent optical media (light filters) are made of optically pure materials - ionic crystals. In general, the main positive feature of these materials is transparency regarding the transmission of radiation in the visible region of the spectrum (transmittance of about 0.9) and neutrality - that is, approximately the same reaction of the medium to different spectral ranges of radiation. Ionic crystals are also widely used in detectors (scintillators, ionizing radiation dosimeters) and lasers. They are also widely used in acousto-optics and electrical engineering (lines of electrical signals delay, which gain efficiency due to the relatively small absorption of ultrasonic waves, and, therefore, it is possible to work with a wide sequence of signals probing the crystal). It is known that when ionizing radiation passes through ionic crystals, color centers appear in them, which can change the spectral composition of radiation both in the UV region and in the visible range. For example, the simplest configurations of color centers (F-centers) lead to the appearance in optical materials of additional absorption bands localized on the wavelength axis with a maximum at the wavelength lmax = 248 нм , but more complex configurations of radiation damage in solids already lead to the appearance of absorption bands at wavelengths in the visible range. This already presents some difficulties for developers and designers of relevant equipment, as changes in the spectral composition of radiation passing through the optical system of the device can lead, for example, to loss of efficiency of the selected radiation receiver, the main characteristic of which is primarily spectral sensitivity. Taking into account possible changes in the spectral composition of radiation is an important and urgent task of modern optical instrumentation. The purpose of this work is the analysis and justification of a method that takes into account structural changes in externally irradiated ionic crystals.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1211
Author(s):  
Barbara Frąszczak ◽  
Monika Kula-Maximenko

The spectrum of light significantly influences the growth of plants cultivated in closed systems. Five lettuce cultivars with different leaf colours were grown under white light (W, 170 μmol m−2 s−1) and under white light with the addition of red (W + R) or blue light (W + B) (230 μmol m−2 s−1). The plants were grown until they reached the seedling phase (30 days). Each cultivar reacted differently to the light spectrum applied. The red-leaved cultivar exhibited the strongest plasticity in response to the spectrum. The blue light stimulated the growth of the leaf surface in all the plants. The red light negatively influenced the length of leaves in the cultivars, but it positively affected their number in red and dark-green lettuce. It also increased the relative chlorophyll content and fresh weight gain in the cultivars containing anthocyanins. When the cultivars were grown under white light, they had longer leaves and higher value of the leaf shape index. The light-green cultivars had a greater fresh weight. Both the addition of blue and red light significantly increased the relative chlorophyll content in the dark-green cultivar. The spectrum enhanced with blue light had positive influence on most of the parameters under analysis in butter lettuce cultivars. These cultivars were also characterised by the highest absorbance of blue light.


1883 ◽  
Vol 36 (228-231) ◽  
pp. 285-286

After the reading of the note on chlorophyll at the meeting of the society on December 13th, I was reminded by Professor Stokes that e and others had succeeded in separating the complex to which the erm chlorophyll had previously been applied into two substances, or ather groups of substances, one characterised by its green colour and ed fluorescence, the other showing a more distinctly yellow colour without fluorescence, and he suggested to me that it would be advisable to ascertain whether the property of yielding glucose by decomposition with acids might not belong to one of these substances or groups of substances only. Professor Stokes at the same time kindly communicated to me the details of the process whereby he succeeded n effecting the separation referred to, a process depending on the action of carbon disulphide in' removing some of the bodies contained n an alcoholic solution of crude chlorophyll in preference to others. The process employed for the same purpose by Mr. Sorby is essentially the same. Before applying disulphide of carbon to an alcoholic extract of green leaves according to the process of Professor Stokes, it was necessary first to remove the ready-formed glucose, tannin, and other matters soluble in water, which almost always exist in such extracts, and which would by their presence have rendered the result of the experiment quite uncertain. This was done in the way I have already described. An ethereal solution of chlorophyll prepared by my method was evaporated, and the residue having been dissolved in alcohol, the solution was mixed with a quantity of carbon disulphide larger than the alcohol would dissolve, and the mixture well shaken. The carbon disulphide acquired a dark green colour, while the supernatant alcoholic liquid, containing principally the xanthophyll of Professor Stokes and Mr. Sorby, was yellow with a tinge of green. The two liquids having been separated, the lower dark green one was washed several times with alcohol to remove any of the xanthophyll that might still be present, and having then been mixed with a large quantity of alcohol, a current of air was passed through it to remove the excess of carbon disulphide as directed by Professor Stokes. In this way I obtained two liquids, one intensely green, the other deep yellow with only a tinge of green. The two liquids were found to contain substances essentially different so far as regards their products of decomposition with acids. The yellow liquid having been mixed with dilute sulphuric acid was evaporated in the waterbath, water being added during evaporation, until the liquid had lost nearly all its colour. A quantity of yellow fatty matter separated during evaporation, and this having been filtered off the liquid was found to contain an abundance of glucose. The yellow fatty matter insoluble in water, dissolved easily in alcohol, but the yellow solutio showed none of the characteristic absorption bands of “acid chloro phyll.” The dark green liquid, treated in exactly the same way yielded a dark green product insoluble in water. The filtrate Iron this gave a slight reaction with Fehling’s solution, but so trifling comparatively that I am inclined to attribute it to the presence o some substance not completely removed from the disulphide of carboi solution by washing with alcohol. The dark green product of tin action of acid insoluble in water was soluble, though with difficultyin boiling alcohol, the solution being dull green and showing the absorption bands due to “acid chlorophyll.” If, therefore, chloro phyll be defined as the constituent of the green parts of plants, which gives a spectrum showing the well-known bands at the red end, and yields by decomposition with acids the product or products going by the name of “acid chlorophyll,” of which Fremy’s phyllocyanin is the most important and most characteristic, then chlorophyll is not a glucoside. The glucoside which accompanies it and resembles it as regards solubility in various menstrua may have to be sought among the group of bodies to which the generic name of xanthophyll has been applied.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 721
Author(s):  
Dariusz Heim ◽  
Michał Krempski-Smejda ◽  
Pablo Roberto Dellicompagni ◽  
Dominika Knera ◽  
Anna Wieprzkowicz ◽  
...  

Detailed analyses of melting processes in phase change material (PCM) glazing units, changes of direct transmittance as well as investigation of refraction index were provided based on laboratory measurements. The main goal of the study was to determine the direct light transmittance versus time under constant solar radiation intensity and stable temperature of the surrounding air. The experiment was conducted on a triple glazed unit with one cavity filled with a paraffin RT21HC as a PCM. The unit was installed in a special holder and exposed to the radiation from an artificial sun. The vertical illuminance was measured by luxmeters and compared with a reference case to determine the direct light transmittance. The transmittance was determined for the whole period of measurements when some specific artefacts were identified and theoretically explained based on values of refractive indexes for paraffins in the solid and liquid state, and for a glass. The melting process of a PCM in a glass unit was identified as a complex one, with interreflections and refraction of light on semi layers characterized by a different physical states (solid, liquid or mushy). These optical phenomena caused nonuniformity in light transmittance, especially when the PCM is in a mushy state. It was revealed that light transmittance versus temperature cannot be treated as a linear function.


2005 ◽  
Vol 5 (3) ◽  
pp. 3491-3532 ◽  
Author(s):  
M. Bitter ◽  
S. M. Ball ◽  
I. M. Povey ◽  
R. L. Jones

Abstract. This paper describes a broadband cavity ringdown spectrometer and its deployment during the 2002 North Atlantic Marine Boundary Layer Experiment (NAMBLEX) to measure ambient concentrations of NO3, N2O5, I2 and OIO at the Mace Head Atmospheric Research Station, Co. Galway, Ireland. The effective absorption path lengths accessible with the spectrometer generally exceeded 10 km, enabling sensitive localised ''point'' measurements of atmospheric absorbers to be made adjacent to the other instruments monitoring chemically related species at the same site. For the majority of observations, the spectrometer was used in an open path configuration thereby avoiding surface losses of reactive species. A subset of observations targeted the N2O5 molecule by detecting the additional NO3 formed by the thermal dissociation of N2O5. In all cases the concentrations of the atmospheric absorbers were retrieved by fitting the differential structure in the broadband cavity ringdown spectra using a methodology adapted from long path differential optical absorption spectroscopy. The uncertainty of the retrieval depends crucially on the correct treatment and fitting of the absorption bands due to water vapour, a topic that is discussed in the context of analysing broadband cavity ringdown spectra. The quality of the measurements and the retrieval method are illustrated with representative spectra acquired during NAMBLEX in spectral regions around 660 nm (NO3 and N2O5) and 570 nm (I2 and OIO). Typical detection limits were 1 pptv for NO3 in an integration time of 100 s, 4 pptv for OIO and 20 pptv for I2 in an integration time of 10 min. Additionally, the concentrations of atmospheric water vapour and the aerosol optical extinction were retrieved in both spectral regions. A companion paper in this issue presents the time series of the measurements and discusses their significance for understanding the variability of short lived nitrogen and iodine compounds in the marine boundary layer.


2021 ◽  
Author(s):  
Syuichi Itahashi ◽  
Hitoshi Irie

Abstract To advance our understanding of surface and aloft nitrogen dioxide (NO2) pollution, this study extensively evaluated NO2 concentrations simulated by the regional air quality modeling system with a horizontal grid resolution of 1.3 km by using the Atmospheric Environmental Regional Observation System (AEROS) ground-based observation network and aloft measurement by multi-axis differential optical absorption spectroscopy (MAX-DOAS) over the greater Tokyo area. Observations are usually limited to the surface level, and gaps remain in our understanding of the behavior of air pollutants above the near-surface layer, particularly within the planetary boundary layer (PBL). Therefore, MAX-DOAS measurement was used, which observes scattered sunlight in the ultraviolet/visible range at several elevation angles between the horizon and zenith to determine the aloft NO2 pollution averaged over 0-1 km. In total, four MAX-DOAS measurement systems at Chiba University (35.63°N, 140.10°E) systematically covered the north, east, west, and south directions to capture the aloft NO2 pollution over the greater Tokyo area. The target period was Chiba-Campaign 2015 conducted from 9 to 23 November 2015. The evaluations showed that the air quality modeling system can generally capture the observed behavior of both surface and aloft NO2 pollution in terms of spatial and temporal coverage. The diurnal variation, which typically showed an increase from evening to early morning without daylight and a decrease during the daytime, was also captured by the model. During Chiba-Campaign 2015, two cases of episodic higher NO2 concentration were identified: one during the nighttime and the other during the daytime as different diurnal patterns. These were related to a stagnant wind field, with the latter also connected to a lower PBL height in cloudy conditions. Comparison of the modeled surface and aloft NO2 concentrations showed that aloft NO2 concentration exhibited a strong linear correlation with surface NO2 concentration, with the aloft value scaled to 0.4-0.5-fold the surface value, irrespective of whether the day was clean or polluted. This scaling value was lower during the nighttime and higher during the daytime. Based on this synergetic analysis of surface and aloft observation bridged by modeling simulation, this study contributes to fostering understanding of aloft NO2 pollution.


2003 ◽  
Vol 792 ◽  
Author(s):  
M.A. van Huis ◽  
A. van Veen ◽  
H. Schut ◽  
B.J. Kooi ◽  
J.Th.M. De Hosson

ABSTRACTMetal nanoclusters (NCs) of lithium, zinc, silver and gold embedded in MgO were created by means of ion implantation of Li, Zn, Ag and Au ions into single crystals of MgO(100) and subsequent thermal annealing. Nanoclusters of the compound semiconductor CdSe were obtained by implantation of both Cd and Se ions. Solid noble gas clusters were formed by Kr ion implantation. Optical and structural properties of the NCs were investigated using optical absorption spectroscopy (OAS), high-resolution X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (XTEM). The mean nanocluster size is estimated from the broadening of the Mie plasmon optical absorption bands using the Doyle formula. These results are compared with the NC size as obtained from XRD (using the Scherrer formula) and from direct XTEM observations. The three methods are found to be in reasonable agreement with a mean size of 4.0 and 10 nm found for the Au and Ag clusters, respectively. Using TEM observations, the relative interface energies of MgO//Au and MgO//Ag interfaces are also determined. In the case of MgO//Au, they are found not to be in agreement with theoretical predictions in the literature. CdSe nanoclusters were found to adopt different crystal structures dependent on the size. Small ones (<5 nm) appear to have a rock salt structure, larger ones the sphalerite structure. The solid krypton NC's are under high pressure. The pressure of individual Krypton bubbles was determined from the moiré fringes


2020 ◽  
Vol 10 (22) ◽  
pp. 8108
Author(s):  
Giacomo Saielli

The absorption spectrum of viologen salts in a medium or low polar solvent is an essential feature that influences all its “chromic” applications, whether we are considering thermochromic, electrochromic, photochromic or chemochromic devices. The prediction by quantum chemical methods of such absorption bands, typically observed in the visible range and due to charge transfer (CT) phenomena, is a very challenging problem due to strong solvent effects influencing both the geometry and the electronic transitions. Here we present a computational protocol based on DFT to predict with very high accuracy the absorption maxima of the CT bands of a series of viologen salts in solvents of low and medium polarity. The calculations also allow a clear dissection of the solvent effects, direct and indirect, and orbital contributions to the CT band.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Jae-Hyung Park ◽  
Ji-Won Jang ◽  
Jae-Hak Sim ◽  
Il-Jin Kim ◽  
Dong-Jin Lee ◽  
...  

Thermoresponsive polymers that exhibit phase transition in response to temperature change can be used as material for smart windows because they can control solar light transmission depending on the outside temperature. The development of thermoresponsive polymers for a smart window that can be used over a wide temperature range is required. Therefore, to obtain smart window materials that can be used at various temperatures, three-dimensional thermoresponsive P(NIPAm-co-BA) hydrogels were prepared by free radical polymerization from main monomer N-isopropylacrylamide, comonomer butyl acrylate, and crosslinking agent N,N′-methylenebisacrylamide (MBAm) in this study. This study examined the effect of BA content on the lower critical solution temperature (LCST) and the solar light transmittance of crosslinked P(NIPAm-co-BA) hydrogel films. The LCST of hydrogel films was found to be significantly decreased from 34.3 to 29.5°C with increasing BA content from 0 to 20 mol%. It was found that the transparent films at T=25°C (T<LCST) were converted to translucent films at a higher temperature (T=45°C) (T>LCST). These results suggested that the crosslinked P(NIPAm-co-BA) hydrogel materials prepared in this study could have high potential for application in smart window materials.


Sign in / Sign up

Export Citation Format

Share Document