Centrosome aberrations in acute myeloid leukemia are correlated with cytogenetic risk profile

Blood ◽  
2003 ◽  
Vol 101 (1) ◽  
pp. 289-291 ◽  
Author(s):  
Kai Neben ◽  
Christian Giesecke ◽  
Silja Schweizer ◽  
Anthony D. Ho ◽  
Alwin Krämer

Abstract Genetic instability is a common feature in acute myeloid leukemia (AML). Centrosome aberrations have been described as a possible cause of aneuploidy in many human tumors. To investigate whether centrosome aberrations correlate with cytogenetic findings in AML, we examined a set of 51 AML samples by using a centrosome-specific antibody to pericentrin. All 51 AML samples analyzed displayed numerical and structural centrosome aberrations (36.0% ± 16.6%) as compared with peripheral blood mononuclear cells from 21 healthy volunteers (5.2% ± 2.0%; P < .0001). In comparison to AML samples with normal chromosome count, the extent of numerical and structural centrosome aberrations was higher in samples with numerical chromosome changes (50.5% ± 14.2% versus 34.3% ± 12.2%; P < .0001). When the frequency of centrosome aberrations was analyzed within cytogenetically defined risk groups, we found a correlation of the extent of centrosome abnormalities to all 3 risk groups (P = .0015), defined as favorable (22.5% ± 7.3%), intermediate (35.3% ± 13.1%), and adverse (50.3% ± 15.6%). These results indicate that centrosome defects may contribute to the acquisition of chromosome aberrations and thereby to the prognosis in AML.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1681
Author(s):  
Patrick Connerty ◽  
Ernest Moles ◽  
Charles E. de Bock ◽  
Nisitha Jayatilleke ◽  
Jenny L. Smith ◽  
...  

Standard of care therapies for children with acute myeloid leukemia (AML) cause potent off-target toxicity to healthy cells, highlighting the need to develop new therapeutic approaches that are safe and specific for leukemia cells. Long non-coding RNAs (lncRNAs) are an emerging and highly attractive therapeutic target in the treatment of cancer due to their oncogenic functions and selective expression in cancer cells. However, lncRNAs have historically been considered ‘undruggable’ targets because they do not encode for a protein product. Here, we describe the development of a new siRNA-loaded lipid nanoparticle for the therapeutic silencing of the novel oncogenic lncRNA LINC01257. Transcriptomic analysis of children with AML identified LINC01257 as specifically expressed in t(8;21) AML and absent in healthy patients. Using NxGen microfluidic technology, we efficiently and reproducibly packaged anti-LINC01257 siRNA (LNP-si-LINC01257) into lipid nanoparticles based on the FDA-approved Patisiran (Onpattro®) formulation. LNP-si-LINC01257 size and ζ-potential were determined by dynamic light scattering using a Malvern Zetasizer Ultra. LNP-si-LINC01257 internalization and siRNA delivery were verified by fluorescence microscopy and flow cytometry analysis. lncRNA knockdown was determined by RT-qPCR and cell viability was characterized by flow cytometry-based apoptosis assay. LNP-siRNA production yielded a mean LNP size of ~65 nm with PDI ≤0.22 along with a >85% siRNA encapsulation rate. LNP-siRNAs were efficiently taken up by Kasumi-1 cells (>95% of cells) and LNP-si-LINC01257 treatment was able to successfully ablate LINC01257 expression which was accompanied by a significant 55% reduction in total cell count following 48 h of treatment. In contrast, healthy peripheral blood mononuclear cells (PBMCs), which do not express LINC01257, were unaffected by LNP-si-LINC01257 treatment despite comparable levels of LNP-siRNA uptake. This is the first report demonstrating the use of LNP-assisted RNA interference modalities for the silencing of cancer-driving lncRNAs as a therapeutically viable and non-toxic approach in the management of AML.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1344
Author(s):  
Isabel Castro ◽  
Belém Sampaio-Marques ◽  
Anabela C. Areias ◽  
Hugo Sousa ◽  
Ângela Fernandes ◽  
...  

Acute myeloid leukemia (AML) is the most common acute leukemia, characterized by a heterogeneous genetic landscape contributing, among others, to the occurrence of metabolic reprogramming. Autophagy, a key player on metabolism, plays an essential role in AML. Here, we examined the association of three potentially functional genetic polymorphisms in the ATG10 gene, central for the autophagosome formation. We screened a multicenter cohort involving 309 AML patients and 356 healthy subjects for three ATG10 SNPs: rs1864182T>G, rs1864183C>T and rs3734114T>C. The functional consequences of the ATG10 SNPs in its canonical function were investigated in vitro using peripheral blood mononuclear cells from a cohort of 46 healthy individuals. Logistic regression analysis adjusted for age and gender revealed that patients carrying the ATG10rs1864182G allele showed a significantly decreased risk of developing AML (OR [odds ratio] = 0.58, p = 0.001), whereas patients carrying the homozygous ATG10rs3734114C allele had a significantly increased risk of developing AML (OR = 2.70, p = 0.004). Functional analysis showed that individuals carrying the ATG10rs1864182G allele had decreased autophagy when compared to homozygous major allele carriers. Our results uncover the potential of screening for ATG10 genetic variants in AML prevention strategies, in particular for subjects carrying other AML risk factors such as elderly individuals with clonal hematopoiesis of indeterminate potential.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1596 ◽  
Author(s):  
Ales Sorf ◽  
Simona Sucha ◽  
Anselm Morell ◽  
Eva Novotna ◽  
Frantisek Staud ◽  
...  

Pharmacotherapy of acute myeloid leukemia (AML) remains challenging, and the disease has one of the lowest curability rates among hematological malignancies. The therapy outcomes are often compromised by the existence of a resistant AML phenotype associated with overexpression of ABCB1 and ABCG2 transporters. Because AML induction therapy frequently consists of anthracycline-like drugs, their efficiency may also be diminished by drug biotransformation via carbonyl reducing enzymes (CRE). In this study, we investigated the modulatory potential of the CDK4/6 inhibitors abemaciclib, palbociclib, and ribociclib on AML resistance using peripheral blood mononuclear cells (PBMC) isolated from patients with de novo diagnosed AML. We first confirmed inhibitory effect of the tested drugs on ABCB1 and ABCG2 in ABC transporter-expressing resistant HL-60 cells while also showing the ability to sensitize the cells to cytotoxic drugs even as no effect on AML-relevant CRE isoforms was observed. All tested CDK4/6 inhibitors elevated mitoxantrone accumulations in CD34+ PBMC and enhanced accumulation of mitoxantrone was found with abemaciclib and ribociclib in PBMC of FLT3-ITD- patients. Importantly, the accumulation rate in the presence of CDK4/6 inhibitors positively correlated with ABCB1 expression in CD34+ patients and led to enhanced apoptosis of PBMC in contrast to CD34− samples. In summary, combination therapy involving CDK4/6 inhibitors could favorably target multidrug resistance, especially when personalized based on CD34− and ABCB1-related markers.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5767-5767
Author(s):  
Bing Xu ◽  
Kai Chen ◽  
Qianying Yang ◽  
Jie Zha ◽  
Haijun Zhao ◽  
...  

Acute myeloid leukemia is a heterogeneous hematopoietic neoplasia with a poor clinical outcome despite its treatment have made great progress in recent years. Strategies for targeting Bcl-2 using ABT-199 attract increasing attentions. however, most treatment failure strongly correlates with acquired up-regulation of MCL-1, which become the Achilles's heel of ABT-199 in clinical use. Here we describe low-cytotoxicity dosage of Chidamide (CS055), a novel selective HDACi designed in China, potentiated the cytotoxicity of ABT-199 towards diverse AML cell lines in vitro and primary samples obtained from patients with AML ex vivo, especially those carrying hyperleukocytosis, as well as highly active in vivo in a AML patient-derived xenograft murine model, while sparing normal peripheral blood mononuclear cells. Mechanistically, ABT-199/CS055-induced cytotoxicity was closely associated with inactivation of Mcl-1 and simultaneous induction of DNA damage accumulation. Of note, we also find a superior resensitization activity of CS055 in contrast with Romidepsin. In summary, our findings suggest that CS055 enhance the eliminating activity of ABT-199 towards AML cells, thus implying a highly promising and potent strategy for treatment of relapsed and refractory AML. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 ◽  
Author(s):  
Liu Yang ◽  
Houyu Zhang ◽  
Xue Yang ◽  
Ting Lu ◽  
Shihui Ma ◽  
...  

Acute myeloid leukemia (AML) refers to a heterogeneous group of hematopoietic malignancies. The well-known European Leukemia Network (ELN) stratifies AML patients into three risk groups, based primarily on the detection of cytogenetic abnormalities. However, the prognosis of cytogenetically normal AML (CN-AML), which is the largest AML subset, can be hard to define. Moreover, the clinical outcomes associated with this subgroup are diverse. In this study, using transcriptome profiles collected from CN-AML patients in the BeatAML cohort, we constructed a robust prognostic Cox model named NEST (Nine-gEne SignaTure). The validity of NEST was confirmed in four external independent cohorts. Moreover, the risk score predicted by the NEST model remained an independent prognostic factor in multivariate analyses. Further analysis revealed that the NEST model was suitable for bone marrow mononuclear cell (BMMC) samples but not peripheral blood mononuclear cell (PBMC) samples, which indirectly indicated subtle differences between BMMCs and PBMCs. Our data demonstrated the robustness and accuracy of the NEST model and implied the importance of the immune dysfunction in the leukemogenesis that occurs in CN-AML, which shed new light on the further exploration of molecular mechanisms and treatment guidance for CN-AML.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1397-1397
Author(s):  
Diego Chacon ◽  
Ali Braytee ◽  
Yizhou Huang ◽  
Julie Thoms ◽  
Shruthi Subramanian ◽  
...  

Background: Acute myeloid leukemia (AML) is a highly heterogeneous malignancy and risk stratification based on genetic and clinical variables is standard practice. However, current models incorporating these factors accurately predict clinical outcomes for only 64-80% of patients and fail to provide clear treatment guidelines for patients with intermediate genetic risk. A plethora of prognostic gene expression signatures (PGES) have been proposed to improve outcome predictions but none of these have entered routine clinical practice and their role remains uncertain. Methods: To clarify clinical utility, we performed a systematic evaluation of eight highly-cited PGES i.e. Marcucci-7, Ng-17, Li-24, Herold-29, Eppert-LSCR-48, Metzeler-86, Eppert-HSCR-105, and Bullinger-133. We investigated their constituent genes, methodological frameworks and prognostic performance in four cohorts of non-FAB M3 AML patients (n= 1175). All patients received intensive anthracycline and cytarabine based chemotherapy and were part of studies conducted in the United States of America (TCGA), the Netherlands (HOVON) and Germany (AMLCG). Results: There was a minimal overlap of individual genes and component pathways between different PGES and their performance was inconsistent when applied across different patient cohorts. Concerningly, different PGES often assigned the same patient into opposing adverse- or favorable- risk groups (Figure 1A: Rand index analysis; RI=1 if all patients were assigned to equal risk groups and RI =0 if all patients were assigned to different risk groups). Differences in the underlying methodological framework of different PGES and the molecular heterogeneity between AMLs contributed to these low-fidelity risk assignments. However, all PGES consistently assigned a significant subset of patients into the same adverse- or favorable-risk groups (40%-70%; Figure 1B: Principal component analysis of the gene components from the eight tested PGES). These patients shared intrinsic and measurable transcriptome characteristics (Figure 1C: Hierarchical cluster analysis of the differentially expressed genes) and could be prospectively identified using a high-fidelity prediction algorithm (FPA). In the training set (i.e. from the HOVON), the FPA achieved an accuracy of ~80% (10-fold cross-validation) and an AUC of 0.79 (receiver-operating characteristics). High-fidelity patients were dichotomized into adverse- or favorable- risk groups with significant differences in overall survival (OS) by all eight PGES (Figure 1D) and low-fidelity patients by two of the eight PGES (Figure 1E). In the three independent test sets (i.e. form the TCGA and AMLCG), patients with predicted high-fidelity were consistently dichotomized into the same adverse- or favorable- risk groups with significant differences in OS by all eight PGES. However, in-line with our previous analysis, patients with predicted low-fidelity were dichotomized into opposing adverse- or favorable- risk groups by the eight tested PGES. Conclusion: With appropriate patient selection, existing PGES improve outcome predictions and could guide treatment recommendations for patients without accurate genetic risk predictions (~18-25%) and for those with intermediate genetic risk (~32-35%). Figure 1 Disclosures Hiddemann: Celgene: Consultancy, Honoraria; Roche: Consultancy, Honoraria, Research Funding; Bayer: Research Funding; Vector Therapeutics: Consultancy, Honoraria; Gilead: Consultancy, Honoraria; Janssen: Consultancy, Honoraria, Research Funding. Metzeler:Celgene: Honoraria, Research Funding; Otsuka: Honoraria; Daiichi Sankyo: Honoraria. Pimanda:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Beck:Gilead: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document